The International Study of Asthma and Allergies in Childhood (ISAAC) uses standardized symptombased questionnaires to describe the prevalence of symptoms of asthma, rhinoconjunctivitis and eczema in children worldwide. Three governorates in the Syrian Arab Republic (Aleppo, Lattakia and Tartous) participated in ISAAC phase 3 in 2001-03. Adolescents in the 13-14 year age group and parents of the 6-7-year-old children completed the questionnaire about asthma symptoms. The prevalence of current symptoms of asthma (wheezing in the last 12 months) in different centres ranged from 4.7% to 5.7% for 6-7-year-olds and 3.9% to 6.5% for 13-14-year-olds. In 13-14-year-olds the prevalence of severe speech-limiting wheeze was 2.0%-3.5%, of rhinoconjunctivitis was 8.6%-14.6% and of eczema was 3.3%-4.2%. Étude internationale de l'asthme et des allergies de l'enfant : phase 3 en République arabe syrienne RÉSUMÉ L'étude internationale de l'asthme et des allergies de l'enfant (ISAAC) utilise des questionnaires standardisés basés sur les symptômes de l'asthme, de la rhinoconjonctivite et de l'eczéma touchant les enfants dans le monde entier. Entre 2001 et 2003, trois gouvernorats de la République arabe syrienne (Alep, Lattaquié et Tartous) ont participé à la phase 3 de l'ISAAC. Les adolescents appartenant à la tranche d'âge 13-14 ans et les parents d'enfants âgés de 6 à 7 ans ont rempli le questionnaire concernant les symptômes de l'asthme. La prévalence des symptômes actifs de l'asthme (sifflement respiratoire au cours des 12 derniers mois) dans différents hôpitaux était comprise entre 4,7 % et 5,7 % pour les enfants âgés de 6 à 7 ans et entre 3,9 % et 6,5 % pour ceux âgés de 13 à 14 ans. Au sein du groupe des 13-14 ans, la prévalence du sifflement respiratoire sévère limitant la parole était comprise entre 2,0 % et 3,5 %, celle de la rhinoconjonctivite variait entre 8,6 % et 14,6 % et celle de l'eczéma oscillait entre 3,3 % et 4,2 %.
املتوسط لرشق الصحية املجلة عرش السادس املجلد السابع العدد
711
The rapid growth in the number of documents available to end users from around the world has led to a greatlyincreased need for machine understanding of their topics, as well as for automatic grouping of related documents. This constitutes one of the main current challenges in text mining. In this work, a novel technique is proposed, to automatically construct a background knowledge structure in the form of a hierarchical ontology, using one of the largest online knowledge repositories: Wikipedia. Then, a novel approach is presented to automatically identify the documents' topics based on the proposed Wikipedia Hierarchical Ontology (WHO). Results show that the proposed model is efficient in identifying documents' topics, and promising, as it outperforms the accuracy of the other conventional algorithms for document clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.