Studies conducted by major national and international scientific bodies have indisputably concluded that the increase in anthropogenic greenhouse gas emissions (GHG) since the mid-20th century has led to irreversible changes in the climate. Data has shown that the contribution of the building sector accounts for 39% of these emissions. Reducing GHG emissions associated with the construction phase of buildings, or embodied carbon (EC), will prevent GHG emissions from entering the atmosphere earlier, reducing the negative impacts. However, to achieve any meaningful reduction, there is a need for consistency and accuracy in the calculations. The accuracy of these calculations is primarily tied to the accuracy of embodied carbon factors (ECF) used in the calculations, values determining the environmental impact of a product or procedure per unit weight. The emissions of any product can be calculated by performing a Life Cycle Assessment (LCA). While the requirements for carrying out an LCA have been standardised in ISO14044, the lack of a definitive national ECF database in the UK means that EC calculations can vary drastically based on the chosen database. An LCA has been carried out on a standard Lidl supermarket design within the A1–A3 boundary. For the calculation, the ECFs were sourced from two different databases, using the GHG conversion factor data published in 2020 by the UK Department of Energy & Climate Change and data published in 2019 by the Inventory of Carbon and Energy (ICE). The latter is currently accepted as the most consistent database for carbon factors in the UK. This study showed that using a more detailed database compared to using a more general database could result in a 35.2% reduction of embodied carbon, while using more detailed data from a single database can reduce it by a further 5.5%. It is necessary to establish the most accurate baseline for embodied carbon so that any carbon reduction attempts can be as effective as possible.
The large-scale shifts in weather patterns and an unprecedented change in climate have given rise to the interest in how climate change will affect the carbon emissions of supermarkets. This study investigates the implications of future climatic conditions on the operation of supermarkets in the UK. The investigation was conducted by performing a series of energy modelling simulations on a LIDL supermarket model in London, based on the UK Climate Projections (UKCP09) future weather years provided by the Chartered Institution of Building Services Engineers (CIBSE). Computational fluid dynamic (CFD) simulations were used to perform the experiment, and the baseline model was validated against the actual data. This investigation ascertains and quantifies the annual energy consumption, carbon emissions, and cooling and heating demand of the supermarket under different climatic projections, which further validate the scientific theory of annual temperature rise as a result of long-term climatic variation. The maximum percentage increase for the annual energy consumption for current and future weather data sets observed was 7.01 and 6.45 for the 2050s medium emissions scenario, (90th) percentile and high emissions scenario, (90th) percentile, respectively, and 11.05, 14.07, and 17.68 for the 2080s low emissions scenario, (90th) percentile, medium (90th) percentile and high emissions scenario (90th) percentile, respectively. A similar inclining trend in the case of annual CO2 emissions was observed where the peak increase percentage was 6.80 and 6.24 for the 2050s medium emissions scenario, (90th) percentile and high (90th) percentile, respectively and 10.84, 13.84, and 17.45 for the 2080s low emissions scenario, (90th) percentile, medium emissions scenario (90th) percentile and high emissions scenario (90th) percentile, respectively. The study also analyses the future heating and cooling demands of the three warmest months and three coldest months of the year, respectively, to determine future variance in their relative values.
The growing awareness of the need to minimise greenhouse gas (GHG) and mitigate climate change has resulted in a greater focus on the embodied carbon (EC) of construction material. One way to ensure the environmental impact of building activities is minimised to a reasonable level is the calculation of their EC. Whilst there are a few studies investigating the role of embodied carbon factor (ECF) databases on the accuracy of EC calculation from cradle to gate, very little is known about the impact of different databases on the end-of-life (EoL) EC calculation. Using ECFs derived from the UK Department for Business, Energy and Industrial Strategy (BEIS), the Royal Institute of Chartered Surveyors (RICS) default values and the Institution of Structural Engineers (IStructE) suggested percentages for different elements of a building’s lifecycle stages, this study presents the impact of different data sources on the calculation of EoL EC. The study revealed that a lack of EoL ECFs databases could result in a significant difference of about 61% and 141% in the calculation of EC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.