Gamete-level sexual selection of externally fertilising species is usually achieved by modifying sperm behaviour with mechanisms thought to alter the chemical environment in which gametes perform. In fish this can be accomplished through the ovarian fluid, a substance released with the eggs at spawning. While its biochemical effects in relation to sperm energetics have been investigated, the influence of the physical environment in which sperm compete remains poorly explored. Our objective was therefore to gain insights on the physical structure of this fluid and potential impacts on reproduction. Using soft-matter physics approaches of steady-state and oscillatory viscosity measurements, we subjected salmon ovarian fluids to variable shear stresses and frequencies resembling those exerted by sperm swimming through the fluid near eggs. We show that this fluid, which in its relaxed state is a gel-like substance, displays a non-Newtonian viscoelastic and shear-thinning profile, where the viscosity decreases with increasing shear rates. We concurrently find that this fluid obeys the Cox-Merz rule below 7.6 Hz and infringes it above, thus indicating a shear-thickening phase where viscosity increases provided it is probed gently enough. This suggests the presence of a unique frequency-dependant structural network with relevant implications on sperm energetics and fertilisation dynamics.
Gamete-level sexual selection of externally fertilising species is usually achieved by modifying sperm behaviour with mechanisms thought to alter the chemical environment in which gametes perform. In fish this can be accomplished through the ovarian fluid, a substance released with the eggs at spawning. While its biochemical effects in relation to sperm energetics have been investigated, the influence of the physical environment in which sperm compete remains poorly explored. Our objective was therefore to gain insights on the physical structure of this fluid and potential impacts on reproduction. Using soft-matter physics approaches of steady-state and oscillatory viscosity measurements, we subjected salmon ovarian fluids to variable shear stresses and frequencies resembling those exerted by sperm swimming through the fluid near eggs. We show that this fluid, which in its relaxed state is a gel-like substance, displays a non-Newtonian viscoelastic and shear-thinning profile, where the viscosity decreases with increasing shear rates. We concurrently find that this fluid obeys the Cox-Merz rule below 7.6 Hz and infringes it above, thus indicating a shear-thickening phase where viscosity increases provided it is probed gently enough. This suggests the presence of a unique frequency-dependant structural network with relevant implications on sperm energetics and fertilisation dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.