Solid state recycling (SSR) is a new approach for making metals recycling more efficient with respect to remelting-based approaches. Friction stir consolidation (FSC) is a new solid-state process that is employed to recycle metallic scraps. Until now, a single-step FSC process was applied to recycled metal chips. During the single-step approach, critical processes parameters, especially processing time and rotational speed, are considered vital to control the quality and mechanical properties of the billet. However, the effectiveness of process parameters is highly restricted by challenging masses of recycling chips and machine competency. The present study first highlights the issues of the single-step FSC process, such as unconsolidated billet and poor mechanical properties at the bottom of the part, i.e., far away from the stirring action. Then, for the first time, three different two-step FSC methods were introduced as new approaches to overcome the existing challenges of the single-step method. The effectiveness of these methods was evaluated through the Vickers hardness measurements, and microstructure analysis. The results showed that two-step FSC methods successfully led to a fully consolidated billet and considerably improved mechanical properties.
Single Point Incremental Forming (SPIF) has recently introduced the concept of material formability enhancement through localized deformation. Since material is processed by means of a pin tool attached to spindle, physical interference (especially in vertical direction) limits attainable shapes with the conventional process. The aim of the following work is to increase the variety of achievable geometries with SPIF through in-process magnetic field assistance. An innovative configuration managing SPIF tool movement using magnetic force is proposed. With this in mind, a magnet configuration was designed to generate a vertical load able to plastically deform a 0.5 mm thick AA1100 aluminum sheet. Experiments were carried out to prove the concept by manufacturing a truncated cone; the results demonstrated the feasibility of Magnetic Field-Assisted SPIF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.