Stimulated devices are highly demanded for actuators and artificial muscles in the recent era but susceptible to low deformation at an applied voltage. In the present work, ionic liquids (ILs) based gel films were prepared from the polyvinyl chloride (PVC), dibutyl adipate (DBA), 1-butyl, 3-methimidazolium chloride, and 1-pentyl-3-methylimidazolium hexafluorophosphate by a simple solvent evaporation method. The structural, morphological, optical, and mechanical properties of the composite PVC/ILs gel were characterized by Fourier-transform infrared spectroscopy (FTIR), Large Angle X-ray scattering (LAXS), UV-visible (UV-vis) absorption spectroscopy, scanning electron micrpscopy (SEM) and elemental mapping. We found that the displacement of plasticized PVC gels-based actuator was 0.1 mm with the response time of 0.33 s at an induced voltage of 1000 V. The loading of 0.02% of IL (fluorides) with PVC gel showed maximum deformation of 0.16 mm with a relatively rapid response time of 0.2 s. These high deformation and response time values of IL fluoride-based gels are dramatically higher than reported PVC gels. Likewise, the loading of IL fluorides in the PVC gel showed a high elongation value at the break of about 377%. This work suggests that the flexible gel based on IL fluorides and PVC could be a potential candidate for the fabrication of highperformance artificial muscles and tunable soft actuators.
Solid state recycling (SSR) is a new approach for making metals recycling more efficient with respect to remelting-based approaches. Friction stir consolidation (FSC) is a new solid-state process that is employed to recycle metallic scraps. Until now, a single-step FSC process was applied to recycled metal chips. During the single-step approach, critical processes parameters, especially processing time and rotational speed, are considered vital to control the quality and mechanical properties of the billet. However, the effectiveness of process parameters is highly restricted by challenging masses of recycling chips and machine competency. The present study first highlights the issues of the single-step FSC process, such as unconsolidated billet and poor mechanical properties at the bottom of the part, i.e., far away from the stirring action. Then, for the first time, three different two-step FSC methods were introduced as new approaches to overcome the existing challenges of the single-step method. The effectiveness of these methods was evaluated through the Vickers hardness measurements, and microstructure analysis. The results showed that two-step FSC methods successfully led to a fully consolidated billet and considerably improved mechanical properties.
The present study was focused on establishing guidelines for successful friction stir welding of Al alloys and Cu lap joints. Detailed investigations in respect to tool geometry, tool material, work-piece material, welding parameters, stacking sequence, and heat sink were carried out. The soundness of welded joints was tested through microscopic analysis and the lap shear test. The results revealed that the tungsten carbide (WC) tool with square-pin produced sound joints in terms of minimized defects and high strength. Further, the use of heat sink proved as an important pre-requisite when the stacking sequence was inversed (i.e., Cu-Al), and this stacking configuration in comparison with the Al-Cu stacking yielded weaker joints. The influence of the tool welding speed (F, mm/min) was found to depend upon the tool material. A range of tool welding speed (23.5-37.5 mm/min) worked well for the WC tool. However, only two values of welding speed (30 mm/min and 37 mm/min) were observed to be conducive when the tool material was HSCo (high-speed cobalt)-steel. Finally, it was concluded to employ the WC tool with square-pin, a welding speed of 30 mm/min, the rotational speed (S, rpm) of 1500 mm/min, and Al-Cu stacking sequence to successfully process the Al/Cu lap joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.