Coalescence of argon droplets with a radius of 25, 50, and 100 nm is studied with computational methods. Molecular dynamics (MD) simulations are carried out to generate reference data. Moreover, a phase-field model resting on a Helmholtz energy equation of state is devised and evaluated by computational fluid dynamics (CFD) simulations. Exactly the same scenarios in terms of geometry, fluid, and state are considered with these approaches. The MD and CFD simulation results show an excellent agreement over the entire coalescence process, including the decay of the inertia-induced oscillation of the merged droplet. Theoretical knowledge about the asymptotic behavior of coalescence process regimes is confirmed. All considered scenarios cross from the inertially limited viscous regime over to the inertial regime because of the low shear viscosity of argon. The particularly rapid dynamics during the initial stages of the coalescence process in the thermal regime is also captured by the phase-field model, where a closer look at the liquid density reveals that metastable states associated with negative pressure are attained in the emerging liquid bridge between the coalescing droplets. This demonstrates that this model is even capable of adequately handling the onset of coalescence. To speed up CFD simulations, the phase-field model is transferred to coarser grids through an interface widening approach that retains the thermodynamic properties including the surface tension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.