Many bacterial species swim by rotating single polar helical flagella. Depending on the direction of rotation, they can swim forward or backward and change directions to move along chemical gradients but also to navigate their obstructed natural environment in soils, sediments, or mucus. When they get stuck, they naturally try to back out, but they can also resort to a radically different flagellar mode, which we discovered here. Using high-speed microscopy, we monitored the swimming behavior of the monopolarly flagellated species Shewanella putrefaciens with fluorescently labeled flagellar filaments at an agarose-glass interface. We show that, when a cell gets stuck, the polar flagellar filament executes a polymorphic change into a spiral-like form that wraps around the cell body in a spiral-like fashion and enables the cell to escape by a screw-like backward motion. Microscopy and modeling suggest that this propagation mode is triggered by an instability of the flagellum under reversal of the rotation and the applied torque. The switch is reversible and bacteria that have escaped the trap can return to their normal swimming mode by another reversal of motor direction. The screw-type flagellar arrangement enables a unique mode of propagation and, given the large number of polarly flagellated bacteria, we expect it to be a common and widespread escape or motility mode in complex and structured environments.Shewanella | flagella | motility | structured environment
The opportunistic pathogen Pseudomonas aeruginosa explores surfaces using twitching motility powered by retractile extracellular filaments called type IV pili (T4P). Single cells twitch by sequential T4P extension, attachment, and retraction. How single cells coordinate T4P to efficiently navigate surfaces remains unclear. We demonstrate that P. aeruginosa actively directs twitching in the direction of mechanical input from T4P in a process called mechanotaxis. The Chp chemotaxis-like system controls the balance of forward and reverse twitching migration of single cells in response to the mechanical signal. Collisions between twitching cells stimulate reversals, but Chp mutants either always or never reverse. As a result, while wild-type cells colonize surfaces uniformly, collision-blind Chp mutants jam, demonstrating a function for mechanosensing in regulating group behavior. On surfaces, Chp senses T4P attachment at one pole, thereby sensing a spatially resolved signal. As a result, the Chp response regulators PilG and PilH control the polarization of the extension motor PilB. PilG stimulates polarization favoring forward migration, while PilH inhibits polarization, inducing reversal. Subcellular segregation of PilG and PilH efficiently orchestrates their antagonistic functions, ultimately enabling rapid reversals upon perturbations. The distinct localization of response regulators establishes a signaling landscape known as local excitation–global inhibition in higher-order organisms, identifying a conserved strategy to transduce spatially resolved signals.
Bacteria swim in sequences of straight runs that are interrupted by turning events. They drive their swimming locomotion with the help of rotating helical flagella. Depending on the number of flagella and their arrangement across the cell body, different run-and-turn patterns can be observed. Here, we present fluorescence microscopy recordings showing that cells of the soil bacterium Pseudomonas putida that are decorated with a polar tuft of helical flagella, can alternate between two distinct swimming patterns. On the one hand, they can undergo a classical push-pull-push cycle that is well known from monopolarly flagellated bacteria but has not been reported for species with a polar bundle of multiple flagella. Alternatively, upon leaving the pulling mode, they can enter a third slow swimming phase, where they propel themselves with their helical bundle wrapped around the cell body. A theoretical estimate based on a random-walk model shows that the spreading of a population of swimmers is strongly enhanced when cycling through a sequence of pushing, pulling, and wrapped flagellar configurations as compared to the simple push-pull-push pattern.
Bacterial flagella are helical proteinaceous fibers, composed of the protein flagellin, that confer motility to many bacterial species. The genomes of about half of all flagellated species include more than one flagellin gene, for reasons mostly unknown. Here we show that two flagellins (FlaA and FlaB) are spatially arranged in the polar flagellum of Shewanella putrefaciens, with FlaA being more abundant close to the motor and FlaB in the remainder of the flagellar filament. Observations of swimming trajectories and numerical simulations demonstrate that this segmentation improves motility in a range of environmental conditions, compared to mutants with single-flagellin filaments. In particular, it facilitates screw-like motility, which enhances cellular spreading through obstructed environments. Similar mechanisms may apply to other bacterial species and may explain the maintenance of multiple flagellins to form the flagellar filament.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.