The nucleation mechanisms of methane hydrates are studied using welltempered metadynamics and restrained molecular dynamics. The collective variables we used to follow the process are the methane−methane and methane−water coordination numbers, from which we computed the corresponding Landau free energy surface. This surface is characterized by two minima, corresponding to the two-phase methane bubble/ water solution and clathrate crystal, and a transition state. The clathrate crystal is of type II, while in the simulation conditions (T = 273 K and P = 500 atm) the most stable phase should be type I. We constructed the steepest ascent/descent path connecting the twophase methane bubble/water solution to the clathrate state and passing through the transition state. We interpret this path as the nucleation path, which shows four phases. First, the concentration of solvated methane increases in the aqueous domain via diffusion through the methane−water interface. Second, units of methane molecules solvated in water meet to form an unstructured cluster. Third, the water content of the nucleus decreases to a value compatible with the type II methane clathrate hydrate composition. Finally, a reordering process of solvated methane and water molecules occurs in a manner consistent with the "blob" hypothesis (Jacobson, L. C.; Hujo, W.; Molinero, V.
We present a mesoscale kinetic model for multicomponent flows, augmented with a short range forcing term, aimed at describing the combined effect of surface tension and near-contact interactions operating at the fluid interface level. Such mesoscale approach is shown to i) accurately capture the complex dynamics of bouncing colliding droplets for different values of the main governing parameters, ii) predict quantitatively the effective viscosity of dense emulsions in micro-channels and iii) simulate the formation of the so-called soft flowing crystals in microfluidic focusers. * Electronic address: a.montessori@iac.cnr.it; Corresponding author arXiv: 2006.13320v1 [physics.flu-dyn]
In this paper, we develop a three-dimensional multiple-relaxation-time lattice Boltzmann method (MRT-LBM) based on a set of nonorthogonal basis vectors. Compared with the classical MRT-LBM based on a set of orthogonal basis vectors, the present non-orthogonal MRT-LBM simplifies the transformation between the discrete velocity space and the moment space and exhibits better portability across different lattices. The proposed method is then extended to multiphase flows at large density ratio with tunable surface tension, and its numerical stability and accuracy are well demonstrated by some benchmark cases. Using the proposed method, a practical case of a fuel droplet impacting on a dry surface at high Reynolds and Weber numbers is simulated and the evolution of the spreading film diameter agrees well with the experimental data. Furthermore, another realistic case of a droplet impacting on a super-hydrophobic wall with a cylindrical obstacle is reproduced, which confirms the experimental finding of Liu et al. ["Symmetry breaking in drop bouncing on curved surfaces," Nat. Commun. 6, 10034 (2015)] that the contact time is minimized when the cylinder radius is comparable with the droplet radius.
The formation of methane-hydrate precursors at large planar water-methane interfaces has been studied using massively parallel molecular dynamics in systems of varying size from around 10 000 to almost 7 × 10(6) molecules. This process took two distinct steps. First, the concentration of solvated methane clusters increases just inside the aqueous domain via slow diffusion from the methane-water interface, forming "clusters" of solvated methane molecules. Second, the re-ordering process of solvated methane and water molecules takes place in a manner very roughly consistent with the "blob" hypothesis, although with important differences, to form hydrate precursors, necessary for subsequent hydrate nucleation and crystallisation. It was found that larger system sizes serve to promote the formation rate of precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.