This review includes the current state of the art understanding and advances in technical developments about various fields of gas hydrates, which are combined with expert perspectives and analyses.
Graphene-TiO(2) composites exhibit excellent potential for photovoltaic applications, provided that efficient photoinduced charge separation can be achieved at the interface. Once charges are separated, TiO(2) acts as an electron carrier, while graphene is an excellent hole conductor. However, charge separation competes with energy losses that can result in rapid electron-hole annihilation inside metallic graphene. Bearing this in mind, we investigate the mechanisms and, crucially, time scales of electron transfer and energy relaxation processes. Using nonadiabatic molecular dynamics formulated within the framework of time-domain density functional theory, we establish that the photoinduced electron transfer occurs several times faster than the electron-phonon energy relaxation (i.e., charge separation is efficient in the presence of electron-phonon relaxation), thereby showing that graphene-TiO(2) interfaces can form the basis for photovoltaic and photocatalytic devices using visible light. We identify the mechanisms for charge separation and energy losses, both of which proceed by rapid, phonon-induced nonadiabatic transitions within the manifold of the electronic states. Electron injection is ultrafast, owing to strong electronic coupling between graphene and TiO(2). Injection is promoted by both out-of-plane graphene motions, which modulate the graphene-TiO(2) distance and interaction, and high-frequency bond stretching and bending vibrations, which generate large nonadiabatic coupling. Both electron injection and energy transfer, injection in particular, accelerate for photoexcited states that are delocalized between the two subsystems. The theoretical results show excellent agreement with the available experimental data [Adv. Funct. Mater. 2009, 19, 3638]. The state-of-the-art simulation generates a detailed time-domain atomistic description of the interfacial charge separation and relaxation processes that are fundamental to a wide variety of applications, including catalysis, electrolysis, and photovoltaics.
In this review, the application of a wide variety of external electric fields in molecular simulation shall be discussed, including time-varying and electromagnetic, as well as the utility and potential impact and prospects for exploitation of such simulations for real-world and industrial end use. In particular, non-equilibrium molecular dynamics will be discussed, as well as challenges in addressing adequate thermostatting and scaling field amplitudes to more experimentally relevant levels. Attention shall be devoted to recent progress and advances in external fields in ab initio molecular simulation and dynamics, as well as elusive challenges thereof (and, to some extent, for molecular dynamics from empirical potentials), such as timescales required to observe low-frequency and intensity field effects. The challenge of deterministic molecular dynamics in external fields in sampling phase space shall be discussed, along with prospects for application of fields in enhanced-sampling simulations. Finally, the application of external electric fields to a wide variety of aqueous, nanoscale and biological systems will be discussed, often motivated by the possibility of exploitation in real-world applications, which serve to underpin our molecular-level understanding of field effects in terms of microscopic mechanisms, and possibly with a view to control thereof.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.