CRYSCOR is a periodic post-Hartree-Fock program based on local functions in direct space, i.e., Wannier functions and projected atomic orbitals. It uses atom centered Gaussians as basis functions. The Hartree-Fock reference, as well as symmetry information, is provided by the CRYSTAL program. CRYSCOR presently features an efficient and parallel implementation of periodic local second order Møller-Plesset perturbation theory (MP2), which allows us to study 1D-, 2D-and 3D-periodic systems beyond 1000 basis functions per unit cell. Apart from the correlation energy also the MP2 density matrix, and from that the Compton profile, are available. Very recently, a new module for calculating excitonic band gaps at the uncorrelated Configuration-Interaction-Singles (CIS) level has been added. Other advancements include new extrapolation techniques for calculating surface adsorption on semiinfinite solids. In this paper the diverse features and recent advances of the present CRYSCOR version are illustrated by exemplary applications to various systems: the adsorption of an argon monolayer on the MgO (100) surface, the rolling energy of a boron nitride nanoscroll, the relative stability of different aluminosilicates, the inclusion energy of methane in methane-ice-clathrates, and the effect of electron correlation on charge and momentum density of a-quartz. Furthermore, we present some first tentative CIS results for excitonic band gaps of simple 3D-crystals, and their dependence on the diffuseness of the basis set.
We present a density fitted local configuration interaction singles (CIS) method for calculating optical band gaps in 1D-periodic systems. The method is based on the Davidson diagonalization procedure, carried out in the reciprocal space. The one-electron part of the matrix-vector products is also evaluated in the reciprocal space, where the diagonality of the Fock matrix can be exploited. The contraction of the CIS vectors with the two electron integrals is performed in the direct space in the basis of localized occupied (Wannier) and virtual (projected atomic) orbitals. The direct space approach allows to utilize the sparsity of the integrals due to the local representation and locality of the exciton. The density fitting approximation employed for the two electron integrals reduces the nominal scaling with unit cell size to O(N 4 ). Test calculations on a series of prototypical systems demonstrate that the method in its present stage can be used to calculate the excitonic band gaps of polymers with up to a few dozens of atoms in the cell. The computational cost depends on the locality of the exciton, but even relatively delocalized excitons occurring in the polybiphenyl in the parallel orientation, can be routinely treated with this method.
Local ab initio methods for calculating optical band gaps in periodic systems. I. Periodic density fitted local configuration interaction singles method for polymers J. Chem. Phys. 134, 094101 (2011) We present a density fitted local configuration interaction singles (CIS) method for calculating optical bandgaps in 3D-periodic systems. We employ an Ewald technique to carry out infinite lattice summations for the exciton-exciton interaction, and robust product-density specific local density fitting in direct space for the electron-hole interaction. Moreover, we propose an alternative to the usual cyclic model with Born-von Karman periodic boundary conditions, the so called Wigner-Seitz supercell truncated infinite model, which exhibits much improved convergence of the CIS excitation energy with respect to the size of the supercell. Test calculations on a series of prototypical systems demonstrate that the method at the present stage can be used to calculate the excitonic bandgaps of 3D periodic systems with up to a dozen atoms in the unit cell, ranging from wide-gap insulators to semiconductors.
The physisorption of water on graphene is investigated with the hybrid density functional theory (DFT)-functional B3LYP combined with empirical corrections, using moderate-sized basis sets such as 6-31G(d). This setup allows to model the interaction of water with graphene going beyond the quality of classical or semiclassical simulations, while still keeping the computational costs under control. Good agreement with respect to Coupled Cluster with singles and doubles excitations and perturbative triples (CCSD(T)) results is achieved for the adsorption of a single water molecule in a benchmark with two DFT-functionals (Perdew/Burke/Ernzerhof (PBE), B3LYP) and Grimme's empirical dispersion and counterpoise corrections. We apply the same setting to graphene supported by epitaxial hexagonal boron nitride (h-BN), leading to an increased interaction energy. To further demonstrate the achievement of the empirical corrections, we model, entirely from first principles, the electronic properties of graphene and graphene supported by h-BN covered with different amounts of water (one, 10 water molecules per cell and full coverage). The effect of h-BN on these properties turns out to be negligibly small, making it a good candidate for a substrate to grow graphene on.
Boron nitride-substituted graphene (BNsG) two-dimensional structures are new materials of wide technological interest due to the rich variety of electronic structures and properties they can exploit. The ability to accurately characterize them is key to their future success. Here we show, by means of ab initio simulations, that the vibrational Raman spectra of such compounds are extremely sensitive to substitution motifs and concentration, and that each structure has unique and distinct features. This result can be useful as a guide for the optimization of production processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.