Computational approaches for modeling expressive music performance have produced systems that emulate music expression, but few steps have been taken in the domain of ensemble performance. In this paper, we propose a novel method for building computational models of ensemble expressive performance and show how this method can be applied for deriving new insights about collaboration among musicians. In order to address the problem of interdependence among musicians we propose the introduction of inter-voice contextual attributes. We evaluate the method on data extracted from multi-modal recordings of string quartet performances in two different conditions: solo and ensemble. We used machine-learning algorithms to produce computational models for predicting intensity, timing deviations, vibrato extent, and bowing speed of each note. As a result, the introduced inter-voice contextual attributes generally improved the prediction of the expressive parameters. Furthermore, results on attribute selection show that the models trained on ensemble recordings took more advantage of inter-voice contextual attributes than those trained on solo recordings.
In a musical ensemble such as a string quartet, the musicians interact and influence each other's actions in several aspects of the performance simultaneously in order to achieve a common aesthetic goal. In this article, we present and evaluate a computational approach for measuring the degree to which these interactions exist in a given performance. We recorded a number of string quartet exercises under two experimental conditions (solo and ensemble), acquiring both audio and bowing motion data. Numerical features in the form of time series were extracted from the data as performance descriptors representative of four distinct dimensions of the performance: Intonation, Dynamics, Timbre, and Tempo. Four different interdependence estimation methods (two linear and two nonlinear) were applied to the extracted features in order to assess the overall level of interdependence between the four musicians. The obtained results suggest that it is possible to correctly discriminate between the two experimental conditions by quantifying interdependence between the musicians in each of the studied performance dimensions; the nonlinear methods appear to perform best for most of the numerical features tested. Moreover, by using the solo recordings as a reference to which the ensemble recordings are contrasted, it is feasible to compare the amount of interdependence that is established between the musicians in a given performance dimension across all exercises, and relate the results to the underlying goal of the exercise. We discuss our findings in the context of ensemble performance research, the current limitations of our approach, and the ways in which it can be expanded and consolidated.
In this paper, we provide a first-person outlook on the technical challenges and developments involved in the recording, analysis, archiving, and cloud-based interchange of multimodal string quartet performance data as part of a collaborative research project on ensemble music making. In order to facilitate the sharing of our own collection of multimodal recordings and extracted descriptors and annotations, we developed a hosting platform and data archival protocol through which multimodal data (audio, video, motion capture, descriptor signals) can be stored, visualized, annotated, and selectively retrieved via a web interface and a dedicated API. By way of this paper we make a twofold contribution: (a) we open our collection of enriched multimodal datasets to the community, the Quartet Dataset ; and (b) we introduce and enable access to our multimodal data exchange platform, the Repovizz system, through which users can upload recorded data, and navigate, playback, or edit existing datasets via a standard Internet browser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.