Metabolic syndrome (MetS) clusters cardiovascular and metabolic risk factors along with hypogonadism and erectile dysfunction. Lifestyle modifications including physical exercise (PhyEx) are well-known treatments for this condition. In this study, we analyzed the effect of PhyEx on hypothalamic-pituitary-testis axis and erectile function by use of an animal MetS model, previously established in rabbits fed a high-fat diet (HFD). Rabbits fed a regular diet (RD) were used as controls. A subset of both groups was trained on a treadmill. HFD rabbits showed typical MetS features, including HG (reduced T and LH) and impairment of erectile function. PhyEx in HFD rabbits completely restored plasma T and LH and the penile alterations. At testicular and hypothalamic levels, an HFD-induced inflammatory status was accompanied by reduced T synthesis and gonadotropin-releasing hormone (GnRH) immunopositivity, respectively. In the testis, PhyEx normalized HFD-related macrophage infiltration and increased the expression of steroidogenic enzymes and T synthesis. In the hypothalamus, PhyEx normalized HFD-induced gene expression changes related to inflammation and glucose metabolism, restored GnRH expression, particularly doubling mRNA levels, and regulated expression of molecules related to GnRH release (kisspeptin, dynorphin). Concerning MetS components, PhyEx significantly reduced circulating cholesterol and visceral fat. In multivariate analyses, cholesterol levels resulted as the main factor associated with MetS-related alterations in penile, testicular, and hypothalamic districts. In conclusion, our results show that PhyEx may rescue erectile function, exert anti-inflammatory effects on hypothalamus and testis, and increase LH levels and T production, thus supporting a primary role for lifestyle modification to combat MetS-associated hypogonadism and erectile dysfunction.
Altered circulating levels of free fatty acids (FFAs), namely short chain fatty acids (SCFAs), medium chain fatty acids (MCFAs), and long chain fatty acids (LCFAs), are associated with metabolic, gastrointestinal, and malignant diseases. Hence, we compared the serum FFA profile of patients with celiac disease (CD), adenomatous polyposis (AP), and colorectal cancer (CRC) to healthy controls (HC). We enrolled 44 patients (19 CRC, 9 AP, 16 CD) and 16 HC. We performed a quantitative FFA evaluation with the gas chromatography–mass spectrometry method (GC–MS), and we performed Dirichlet-multinomial regression in order to highlight disease-specific FFA signature. HC showed a different composition of FFAs than CRC, AP, and CD patients. Furthermore, the partial least squares discriminant analysis (PLS-DA) confirmed perfect overlap between the CRC and AP patients and separation of HC from the diseased groups. The Dirichlet-multinomial regression identified only strong positive association between CD and butyric acid. Moreover, CD patients showed significant interactions with age, BMI, and gender. In addition, among patients with the same age and BMI, being male compared to being female implies a decrease of the CD effect on the (log) prevalence of butyric acid in FFA composition. Our data support GC–MS as a suitable method for the concurrent analysis of circulating SCFAs, MCFAs, and LCFAs in different gastrointestinal diseases. Furthermore, and notably, we suggest for the first time that butyric acid could represent a potential biomarker for CD screening.
Rheumatoid arthritis (RA) is a chronic inflammatory disease caused by a faulty autoimmune response. Recently, it was reported that some human carbonic anhydrases (CAs) isoforms are overexpressed in inflamed synovium of RA patients. New CA inhibitors (CAIs) incorporating CA-binding moiety and the cyclooxygenase inhibitor tail (nonsteroidal anti-inflammatory drug [NSAID] type) were studied. The aim of this work is the evaluation of the chemical stability of NSAID − CAI hybrids towards spontaneous or enzymatic hydrolysis by LC-MS/MS. The analytes are isomer pairs of 6- or 7-hydroxycoumarin, their different fragment ions abundances allowed the development of a mathematical tool (LEDA) to distinguish them. LEDA reliability at ng mL−1 level was checked (>90%), being proved the effectiveness in the correct assignment of the isomer present in the sample. The hybrids resulted stable in all tested matrices allowing us to conclude that these compounds reach the target tissues unmodified, opening perspectives for their development in the treatment of inflammation.
Monoterpene-glycosides are important aroma precursors that, undergo hydrolysis, confer intense floral notes to the wines. Therefore, the knowledge of the nature of the sugar residues and the structure of these molecules is of great interest. In present study, liquid chromatography (LC) separation coupled with different mass spectrometry (MS) experiments for the characterization of these compounds were explored. The LC parameters were tuned to optimize the resolution between the analytes present in grape sample extracts. Twenty principal peaks with a relative abundance >1% were selected and divided in 4 classes characterized by different molecular weight. In general, positive ionization of the studied compounds displayed the [M + NH ] ion as base peak. On the contrary, a distribution between [M + Cl] and [M + HCOO] species was observed in negative ion mode. However, a clear differentiation between the studied compounds was only possible by combining both LC and tandem MS (MS/MS). Indeed, by applying a series of energy resolved MS/MS experiments and monitoring both positive and negative ions, a structural characterization of the analytes was achieved. The proposed LC-MS/MS approach provided the profile of monoterpenol-diglycosides and allowed the identification of a series of isobaric terpene-diglycosides in grape. The study of their MS/MS spectra indicated the structure of geranic and/or nerolic acid aglycones. To verify the interest of studied compounds, a preliminary evaluation of the intensity of signals of these glycosides were carried out. The obtained results showed a significant difference between the grape samples collected in two different vintages.
Background and aimsCrohn’s disease (CD) pathogenesis is still unclear. Remodeling in mucosal microbiota and systemic immunoregulation may represent an important component in tissue injury. Here, we aim to characterize the ileal microbiota in both pathological and healthy settings and to evaluate the correlated systemic microbial-associated inflammatory markers comparing first-time surgery and relapse clinical conditions.MethodsWe enrolled 28 CD patients at surgery; we collected inflamed and non-inflamed mucosa tissues and blood samples from each patient. Bacterial wall adherence was observed histologically, while its composition was assessed through amplicon sequencing of the 16S rRNA gene. In addition, we evaluated the systemic microRNA (miRNA) using quantitative real-time PCR amplification and free fatty acids (FFAs) using gas chromatography–mass spectroscopy.ResultsThe total number of mucosal adherent microbiota was enriched in healthy compared to inflamed mucosa. In contrast, the phylum Tenericutes, the family Ruminococcaceae, and the genera Mesoplasma and Mycoplasma were significantly enriched in the pathological setting. Significant microbiota differences were observed between the relapse and first surgery patients regarding the families Bacillaceae 2 and Brucellaceae and the genera Escherichia/Shigella, Finegoldia, Antrobacter, Gemmatimonas, Moraxella, Anoxibacillus, and Proteus. At the systemic level, we observed a significant downregulation of circulating miR-155 and miR-223, as well as 2-methyl butyric, isobutyric, and hexanoic (caproic) acids in recurrence compared to the first surgery patients. In addition, the level of hexanoic acid seems to act as a predictor of recurrence risk in CD patients (OR 18; 95% confidence interval 1.24–261.81; p = 0.006).ConclusionsWe describe a dissimilarity of ileal microbiota composition comparing CD and healthy settings, as well as systemic microbial-associated inflammatory factors between first surgery and surgical relapse. We suggest that patterns of microbiota, associated with healthy ileal tissue, could be involved in triggering CD recurrence. Our findings may provide insight into the dynamics of the gut microbiota–immunity axis in CD surgical recurrence, paving the way for new diagnostics and therapeutics aimed not only at reducing inflammation but also at maintaining a general state of eubiosis in healthy tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.