Summary The amount of genetic variation discovered in human populations is growing rapidly leading to challenging computational tasks, such as variant calling. Standard methods for addressing this problem include read mapping, a computationally expensive procedure; thus, mapping-free tools have been proposed in recent years. These tools focus on isolated, biallelic SNPs, providing limited support for multi-allelic SNPs and short insertions and deletions of nucleotides (indels). Here we introduce MALVA, a mapping-free method to genotype an individual from a sample of reads. MALVA is the first mapping-free tool able to genotype multi-allelic SNPs and indels, even in high-density genomic regions, and to effectively handle a huge number of variants. MALVA requires one order of magnitude less time to genotype a donor than alignment-based pipelines, providing similar accuracy. Remarkably, on indels, MALVA provides even better results than the most widely adopted variant discovery tools.
Background: De novo genome assembly relies on two kinds of graphs: de Bruijn graphs and overlap graphs. Overlap graphs are the basis for the Celera assembler, while de Bruijn graphs have become the dominant technical device in the last decade. Those two kinds of graphs are collectively called assembly graphs. Results: In this review, we discuss the most recent advances in the problem of constructing, representing and navigating assembly graphs, focusing on very large datasets. We will also explore some computational techniques, such as the Bloom filter, to compactly store graphs while keeping all functionalities intact. Conclusions: We complete our analysis with a discussion on the algorithmic issues of assembling from long reads (e.g., PacBio and Oxford Nanopore). Finally, we present some of the most relevant open problems in this field.
Compressed suffix trees and bidirectional FM-indexes can store a set of strings and support queries that let us explore the set of substrings they contain, adding and deleting characters on both the left and right, but they can use much more space than a de Bruijn graph for the strings. Bowe et al.'s BWT-based de Bruijn graph representation (Proc. Workshop on Algorithms for Bioinformatics, pp. 225-235, 2012) can be made bidirectional as well, at the cost of increasing its space usage by a small constant, but it fixes the length of the substrings. Boucher et al. (Proc. Data Compression Conference, pp. 383-392, 2015) generalized Bowe et al.'s representation to support queries about variable-length substrings, but at the cost of bidirectionality. In this paper we show how * A preliminary version of this paper was presented at the 12th Latin American Theoretical Informatics Symposium (LATIN '16). This research was done while the fourth author was visiting the University of Helsinki and the first and second authors were employed there. It was partly funded by Academy of Finland grants 268324, 2845984 and 294143.
Abstract. We present a space-and time-efficient fully dynamic implementation de Bruijn graphs, which can also support fixed-length jumbled pattern matching.
Motivation The latest advances in cancer sequencing, and the availability of a wide range of methods to infer the evolutionary history of tumors, have made it important to evaluate, reconcile and cluster different tumor phylogenies. Recently, several notions of distance or similarities have been proposed in the literature, but none of them has emerged as the golden standard. Moreover, none of the known similarity measures is able to manage mutations occurring multiple times in the tree, a circumstance often occurring in real cases. Results To overcome these limitations, in this paper we propose MP3, the first similarity measure for tumor phylogenies able to effectively manage cases where multiple mutations can occur at the same time and mutations can occur multiple times. Moreover, a comparison of MP3 with other measures shows that it is able to classify correctly similar and dissimilar trees, both on simulated and on real data. Availability An open source implementation of MP3 is publicly available at https://github.com/AlgoLab/mp3treesim. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.