Featured Application: The specific application of the presented work is the increase in laser-induced damage threshold of polished components made of optical glasses such as lenses, prisms, and protection windows.Abstract: The laser-induced damage threshold of optics is an issue of essential importance in high-power laser applications. However, the complex and partially interacting mechanisms as well as the underlying reasons for laser damage of glass surfaces are not yet fully understood. The aim of the present work is to contribute to a better understanding of such damage mechanisms by providing original results on the impact of classical glass surface machining on the laser-induced damage threshold. For this purpose, glass samples were prepared with well-defined process conditions in terms of the used lapping and polishing agents and suspensions. Further, the samples were post-processed by atmospheric pressure plasma for precision cleaning. The laser-induced damage threshold and surface contamination by residues from the manufacturing process were determined before and after plasma post-processing. It is shown that the polishing suspension concentration has a certain impact on the laser-induced damage threshold and surface contamination by residues from used working materials. The highest damage threshold of 15.2 J/cm 2 is found for the lowest surface contamination by carbon which occurs in the case of the highest polishing suspension concentration. After plasma treatment for merely 60 s, this value was increased to 20.3 J/cm 2 due to the removal of surface-adherent carbon. The results thus imply that the laser-induced damage threshold can notably be increased by first choosing appropriate process parameters during classical manufacturing and second plasma post-processing for surface finishing.
In this contribution, a plasma-based approach for finishing optics surfaces is introduced. Experiments were performed on classically manufactured zinc crown glass and sapphire. It is shown that the use of direct dielectric barrier discharge plasma at atmospheric pressure allows the removal of surface-adherent carbonaceous contaminations that were induced by classical manufacturing. Moreover, the use of such plasma leads to a certain decrease in surface roughness. Both effects, surface cleaning and smoothing finally increase the laser-induced damage threshold of optical components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.