We report a measurement of the energy spectrum of cosmic rays for energies above 2.5 × 10 18 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5 × 10 19 eV. The principal conclusions are (1) The flattening of the spectrum near 5 × 10 18 eV, the so-called "ankle," is confirmed. (2) The steepening of the spectrum at around 5 × 10 19 eV is confirmed. (3) A new feature has been identified in the spectrum: in the region above the ankle the spectral index γ of the particle flux (∝ E −γ) changes from 2.51 AE 0.03 ðstatÞ AE 0.05 ðsystÞ to 3.05 AE 0.05 ðstatÞ AE 0.10 ðsystÞ before changing sharply to 5.1 AE 0.3 ðstatÞ AE 0.1 ðsystÞ above 5 × 10 19 eV. (4) No evidence for any dependence of the spectrum on declination has been found other than a mild excess from the Southern Hemisphere that is consistent with the anisotropy observed above 8 × 10 18 eV.
We report a measurement of the energy spectrum of cosmic rays above 2.5 × 10 18 eV based on 215 030 events. New results are presented: at about 1.3 × 10 19 eV, the spectral index changes from Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
We use a multimessenger approach to constrain realistic mixed composition models of ultrahigh energy cosmic ray sources using the latest cosmic ray, neutrino, and gamma-ray data. We build on the successful Unger-Farrar-Anchordoqui 2015 (UFA15) model which explains the shape of the spectrum and its complex composition evolution via photodisintegration of accelerated nuclei in the photon field surrounding the source. We explore the constraints which can currently be placed on the redshift evolution of sources and the temperature of the photon field surrounding the sources. We show that a good fit is obtained to all data either with a source which accelerates a narrow range of nuclear masses or a Milky Way-like mix of nuclear compositions, but in the latter case the nearest source should be 30-50 Mpc away from the Milky Way in order to fit observations from the Pierre Auger Observatory. We also ask whether the data allow for a subdominant purely protonic component at UHE in addition to the primary UFA15 mixed composition component. We find that such a two-component model can significantly improve the fit to cosmic ray data while being compatible with current multimessenger data.
We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.