There are several physiological and pharmacological evidences indicating that opening of voltage dependent calcium channels play a crucial role in the induction of the acrosome reaction in mammalian sperm. In mature sperm, physiological inductors of the acrosome reaction such as ZP3, a zona pellucida protein, and the steroid hormone progesterone, induce depolarization and calcium influx, which are required for the acrosome reaction. In this paper, we describe a voltage-dependent calcium influx present in human sperm. We report an experimental procedure that allows measurement of intracellular calcium and membrane potential simultaneously using the fluorescent dyes DiSC3(5) and Fura-2. We found that in human uncapacitated sperm, depolarization induces a nifedipine-insensitive calcium influx that, in most cases, was transient. Calcium influx was observed in the range of -60 to -15 mV (the range tested). At resting membrane potential (around -40 mV), potassium addition depolarized and induced calcium influx, but when the depolarization was preceded by a hyperpolarization (induced with valinomycin), calcium influx was remarkably enhanced, suggesting that at -40 mV, channels are in a putative inactivated state. When sperm was incubated in medium without calcium, calcium restoration caused calcium influx that depended on voltage, and decayed between 1 and 2 min after depolarization. Unlike ram, mouse or bovine sperm, in which an alkalinization is required to induce calcium influx with potassium, the voltage-dependent calcium influx observed in human sperm did not require an increase in internal or external pH. However, we observed that ammonium, which increases intracellular pH, enhanced the voltage-dependent calcium influx about 90%. Furthermore, depolarization by itself caused a small increase in intracellular pH suggesting that pH can be regulated by membrane potential in human sperm.
The acrosome reaction (AR), necessary for fertilization in many species, requires an increase in intracellular Ca(2+) ([Ca(2+)](i)). In sea urchin sperm, the AR is triggered by an egg-jelly factor: the associated [Ca(2+)](i) elevation lasts minutes and involves two Ca(2+) permeable channels. Both the opening of the second channel and the onset of the AR occur approximately 5 s after treatment with egg factor, suggesting that these events are linked. In agreement, removal of Ca(2+) from sea water or addition of Ca(2+) channel blockers at the time when opening of the second channel is first detected inhibits AR and causes a "rapid" (t(1/2) = 3--15 s) decrease in [Ca(2+)](i) and partial inhibition of the intracellular pH change associated with the AR. Simultaneous addition of NH(4)Cl and either EGTA, Co(2+), or Ni(2+) 5 s after egg factor prevents the partial inhibition of the evoked pH(i) change observed but does not reverse AR inhibition. Therefore, the sustained increase in [Ca(2+)](i) caused by the second Ca(2+) channel is needed for the sperm AR. Experiments with agents that induce capacitative Ca(2+) uptake (thapsigargin and cyclopiazonic acid) suggest that the second channel opened during the AR could be a store-operated Ca(2+) channel.
Human sperm are endowed with putative voltage-dependent calcium channels (VDCC) that produce measurable increases in intracellular calcium concentration ([Ca(2+)](i)) in response to membrane depolarization with potassium. These channels are blocked by nickel, inactivate in 1-2 min in calcium-deprived medium, and are remarkably stimulated by NH(4)Cl, suggesting a role for intracellular pH (pH(i)). In a previous work, we showed that calcium permeability through these channels increases approximately onefold during in vitro "capacitation," a calcium-dependent process that sperm require to fertilize eggs. In this work, we have determined the pH(i) dependence of sperm VDCC. Simultaneous depolarization and pH(i) alkalinization with NH(4)Cl induced an [Ca(2+)](i) increase that depended on the amount of NH(4)Cl added. VDCC stimulation as a function of pH(i) showed a sigmoid curve in the 6.6-7.2 pH(i) range, with a half-maximum stimulation at pH approximately 7.00. At higher pH(i) (> or =7.3), a further stimulation occurred. Calcium release from internal stores did not contribute to the stimulating effect of pH(i) because the [Ca(2+)](i) increase induced by progesterone, which opens a calcium permeability pathway that does not involve gating of VDCC, was unaffected by ammonium. The ratio of pH(i)-stimulated-to-nonstimulated calcium influx was nearly constant at different test depolarization values. Likewise, depolarization-induced calcium influx in pH(i)-stimulated and nonstimulated cells was equally blocked by nickel. In our capacitating conditions pH(i) increased 0.11 pH units, suggesting that the calcium influx stimulation observed during sperm capacitation might be partially caused by pH(i) alkalinization. Additionally, a calcium permeability pathway triggered exclusively by pH(i) alkalinization was detected.
Human sperm motility arrest induced by external calcium removal is mediated principally by sodium loading, which would stimulate the Na(+)/K(+)-ATPase and in turn deplete the ATP content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.