In the development of cell-based medicinal products, it is crucial to guarantee that the application of such an advanced therapy medicinal product (ATMP) is safe for the patients. The consensus of the European regulatory authorities is: "In conclusion, on the basis of the state of art, conventional karyotyping can be considered a valuable and useful technique to analyse chromosomal stability during preclinical studies". 408 chondrocyte samples (84 monolayers and 324 spheroids) from six patients were analysed using trypsin-Giemsa staining, spectral karyotyping and fluorescence in situ hybridisation, to evaluate the genetic stability of chondrocyte samples from non-clinical studies. Single nucleotide polymorphism (SNP) array analysis was performed on chondrocyte spheroids from five of the six donors. Applying this combination of techniques, the genetic analyses performed revealed no significant genetic instability until passage 3 in monolayer cells and interphase cells from spheroid cultures at different time points. Clonal occurrence of polyploid metaphases and endoreduplications were identified associated with prolonged cultivation time. Also, gonosomal losses were observed in chondrocyte spheroids, with increasing passage and duration of the differentiation phase. Interestingly, in one of the donors, chromosomal aberrations that are also described in extraskeletal myxoid chondrosarcoma were identified. The SNP array analysis exhibited chromosomal aberrations in two donors and copy neutral losses of heterozygosity regions in four donors. This study showed the necessity of combined genetic analyses at defined cultivation time points in quality studies within the field of cell therapy.
Glioblastoma is a common, malignant brain tumor whose disease incidence increases with age. Glioblastoma stem-like cells (GSCs) are thought to contribute to cancer therapy resistance and to be responsible for tumor initiation, maintenance, and recurrence. This study utilizes both SNP array and gene expression profiling to better understand GSCs and their relation to malignant disease. Peripheral blood and primary glioblastoma tumor tissue were obtained from patients, the latter of which was used to generate GSCs as well as a CD133 pos. /CD15 pos. subpopulation. The stem cell features of GSCs were confirmed via the immunofluorescent expression of Nestin, SOX2, and CD133. Both tumor tissue and the isolated primary cells shared unique abnormal genomic characteristics, including a gain of chromosome 7 as well as either a partial or complete loss of chromosome 10. Individual genomic differences were also observed, including the loss of chromosome 4 and segmental uniparental disomy of 9p24.3→p21.3 in GSCs. Gene expression profiling revealed 418 genes upregulated in tumor tissue vs. CD133 pos. /CD15 pos. cells and 44 genes upregulated in CD133 pos. /CD15 pos. cells vs. tumor tissue. Pathway analyses demonstrated that upregulated genes in CD133 pos. /CD15 pos. cells are relevant to cell cycle processes and cancerogenesis. In summary, we detected previously undescribed genomic and gene expression differences when comparing tumor tissue and isolated stem-like subpopulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.