Paracoccidioidomycosis is a neglected disease that causes economic and social impacts, mainly affecting people of certain social segments, such as rural workers. The limitations of antifungals, such as toxicity, drug interactions, restricted routes of administration, and the reduced bioavailability in target tissues, have become evident in clinical settings. These factors, added to the fact that Paracoccidioidomycosis (PCM) therapy is a long process, lasting from months to years, emphasize the need for the research and development of new molecules. Researchers have concentrated efforts on the identification of new compounds using numerous tools and targeting important proteins from Paracoccidioides, with the emphasis on enzymatic pathways absent in humans. This review aims to discuss the aspects related to the identification of compounds, methodologies, and perspectives when proposing new antifungal agents against PCM.
A serious emerging problem worldwide is increased antimicrobial resistance. Acquisition of coding genes for evasion methods of antimicrobial drug mechanisms characterizes acquired resistance. This phenomenon has been observed in Enterobacteriaceae family. Treatment for bacterial infections is performed with antibiotics, of which the most used are beta-lactams. The aim of this study was to correlate antimicrobial resistance profiles in Enterobacteriaceae by phenotypic methods and molecular identification of 14 beta-lactamase coding genes. In this study, 70 exclusive isolates from Brazil were used, half of which were collected in veterinary clinics or hospitals Phenotypic methodologies were used and real-time PCR was the molecular methodology used, through the Sybr Green system. Regargding the results found in the tests it was observed that 74.28% were resistant to ampicillin, 62.85% were resistant to amoxicillin associated with clavalunate. The mechanism of resistance that presented the highest expression was ESBL (17.14%). The genes studied that were detected in a greater number of species were blaGIM and blaSIM (66.66% of the samples) and the one that was amplified in a smaller number of samples was blaVIM (16.66%). Therefore, high and worrying levels of antimicrobial resistance have been found in enterobacteria, and a way to minimize the accelerated emergence of their resistance includes developing or improving techniques that generate diagnoses with high efficiency and speed.
Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição 4.0 Internacional (CC BY 4.0).O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
Paracoccidioides spp. are endemic fungi from Latin America that cause Paracoccidioidomycosis, a systemic disease. These fungi present systems for high-affinity metal uptake, storage, and mobilization, which counteract host nutritional immunity and mitigate the toxic effects of metals. Regarding Cu mobilization, the metallochaperone Atx1 is regulated according to Cu bioavailability in Paracoccidioides spp., contributing to metal homeostasis. However, additional information in the literature on PbAtx1 is scarce. Therefore, in the present work, we aimed to study the PbAtx1 protein–protein interaction networks. Heterologous expressed PbAtx1 was used in a pull-down assay with Paracoccidioides brasiliensis cytoplasmic extract. Nineteen proteins that interacted with PbAtx1 were identified by HPLC-MSE. Among them, a relevant finding was a Cytochrome b5 (PbCyb5), regulated by Fe bioavailability in Aspergillus fumigatus and highly secreted by P. brasiliensis in Fe deprivation. We validated the interaction between PbAtx1-PbCyb5 through molecular modeling and far-Western analyses. It is known that there is a relationship between Fe homeostasis and Cu homeostasis in organisms. In this sense, would PbAtx1-PbCyb5 interaction be a new metal-sensor system? Would it be supported by the presence/absence of metals? We intend to answer those questions in future works to contribute to the understanding of the strategies employed by Paracoccidioides spp. to overcome host defenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.