We discuss the complex eco-social factors involved in the puzzle of the unexpected rapid viral spread in the ongoing Brazilian yellow fever (YF) outbreak, which has increased the reurbanisation risk of a disease without urban cases in Brazil since 1942. Indeed, this rapid spatial viral dissemination to the Southeast and South regions, now circulating in the Atlantic Forest fragments close to peri-urban areas of the main Brazilian megalopolises (São Paulo and Rio de Janeiro) has led to an exponential increase in the number of yellow fever cases. In less than 18 months, 1,833 confirmed cases and 578 deaths were recorded most of them reported in the Southeast region (99,9%). Large epizooties in monkeys and other non-human primates (NHPs) were communicated in the country with 732 YF virus (YFV) laboratory confirmed events only in the 2017/2018 monitoring period. We also discuss the peculiarities and similarities of the current outbreak when compared with previous great epidemics, examining several hypotheses to explain the recent unexpected acceleration of epizootic waves in the sylvatic cycle of the YFV together with the role of human, NHPs and mosquito mobility with respect to viral spread. We conclude that the most feasible hypothesis to explain this rapidity would be related to human behavior combined with ecological changes that promoted a significant increase in mosquito and NHP densities and their contacts with humans. We emphasize the urgent need for an adequate response to this outbreak such as extending immunisation coverage to the whole Brazilian population and developing novel strategies for immunisation of NHPs confined in selected reserve areas and zoos. Finally, we stress the urgent need to improve the quality of response in order to prevent future outbreaks and a catastrophic reurbanisation of the disease in Brazil and other South American countries. Continuous monitoring of YFV receptivity and vulnerability conditions with effective control of the urban vector Aedes aegypti and significant investments in YF vaccine production capacity and research and development for reduction of adverse effects are of the highest priority.
Highlights► Human hookworm infection is a leading cause of iron deficiency anemia. ► An estimated 700 million people in developing countries are affected. ► The Sabin Vaccine Institute PDP is developing the vaccine in collaboration with FIOCRUZ. ► The vaccine comprises two recombinant protein antigens on alum and a TLR4 agonist. ► The partnership's plan is that the vaccine will be licensed by 2020.
BackgroundThe live attenuated 17DD Yellow Fever vaccine is one of the most successful prophylactic interventions for controlling disease expansion ever designed and utilized in larger scale. However, increase on worldwide vaccine demands and manufacturing restrictions urge for more detailed dose sparing studies. The establishment of complementary biomarkers in addition to PRNT and Viremia could support a secure decision-making regarding the use of 17DD YF vaccine subdoses. The present work aimed at comparing the serum chemokine and cytokine kinetics triggered by five subdoses of 17DD YF Vaccine.MethodsNeutralizing antibody titers, viremia, cytokines and chemokines were tested on blood samples obtained from eligible primary vaccinees.Results and discussionThe results demonstrated that a fifty-fold lower dose of 17DD-YF vaccine (587 IU) is able to trigger similar immunogenicity, as evidenced by significant titers of anti-YF PRNT. However, only subdoses as low as 3,013 IU elicit viremia kinetics with an early peak at five days after primary vaccination equivalent to the current dose (27,476 IU), while other subdoses show a distinct, lower in magnitude and later peak at day 6 post-vaccination. Although the subdose of 587 IU is able to trigger equivalent kinetics of IL-8/CXCL-8 and MCP-1/CCL-2, only the subdose of 3,013 IU is able to trigger similar kinetics of MIG/CXCL-9, pro-inflammatory (TNF, IFN-γ and IL-2) and modulatory cytokines (IL-5 and IL-10).ConclusionsThe analysis of serum biomarkers IFN-γ and IL-10, in association to PRNT and viremia, support the recommendation of use of a ten-fold lower subdose (3,013 IU) of 17DD-YF vaccine.
The data demonstrated that the overall cytokine signature was associated with the levels of PRNT antibodies with a balanced innate/adaptive immunity with proinflammatory/regulatory profile as the hallmark of PV-PRNT(MEDIUM⁺), whereas a polarized regulatory response was observed in PV-PRNT⁻ and a prominent proinflammatory signature was the characteristic of PV-PRNT(HIGH⁺).
Yellow fever is a disease caused by the prototype virus of the genus Flavivirus and remains endemic in tropical forest regions from Africa and South America, despite the availability of effective vaccines. These are capable of inducing a rapid specific immune response, with the formation of neutralizing antibodies that appear early, are protective and long lasting. The Plaque Reduction Neutralization Test is considered the most sensitive and specific test for quantification of neutralizing antibodies, and the reference method for assessing the protective immune response after vaccination. This study evaluated the reliability (repeatability and reproducibility) and accuracy (sensitivity, specificity and overall accuracy) of micro-PRNT50 and compared its performance with the micro-PRNT90. Although the micro-PRNT50 has showed satisfactory levels of reliability (ICCs ranged from 0.62 to 0.NorNormas e Manuais Técnicosas e Manuais Técnicos6 for repeatability and 0.72 for reproducibility) and accuracy (sensitivity of 91.1%, specificity of 72.9% and overall accuracy of 78%), the micro-PRNT90 showed higher performance, with ICCs for repeatability ranged from 0.78 to 0.79 and 0.81 for reproducibility, sensitivity of 100%, specificity of 94.7% and overall accuracy of 95%. Modifications in the test methodology and changes in the classification criteria in the readings of the results obtained will be important to improve the accuracy of micro-PRNT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.