Advances supported by emerging wearable technologies in healthcare promise patients a provision of high quality of care. Wearable computing systems represent one of the most thrust areas used to transform traditional healthcare systems into active systems able to continuously monitor and control the patients' health in order to manage their care at an early stage. However, their proliferation creates challenges related to data management and integration. The diversity and variety of wearable data related to healthcare, their huge volume and their distribution make data processing and analytics more difficult. In this paper, we propose a generic semantic big data architecture based on the "Knowledge as a Service" approach to cope with heterogeneity and scalability challenges. Our main contribution focuses on enriching the NIST Big Data model with semantics in order to smartly understand the collected data, and generate more accurate and valuable information by correlating scattered medical data stemming from multiple wearable devices or/and from other distributed data sources. We have implemented and evaluated a Wearable KaaS platform to smartly manage heterogeneous data coming from wearable devices in order to assist the physicians in supervising the patient health evolution and keep the patient up-to-date about his/her status.
The highly dynamic nature of domain ontologies has a direct impact on semantic mappings established between concepts from different ontologies. Mappings must therefore be maintained according to ongoing ontology changes. Since many software applications exploit mappings for managing information and knowledge, it is important to define appropriate adaptation strategies to apply to existing mappings in order to keep their validity over time. In this article, we propose a set of mapping adaptation actions and present how they are used to maintain mappings up-to-date based on ontology change operations of different nature. We conduct an experimental evaluation using life sciences ontologies and mappings. We measure the evolution of mappings based on the proposed approach to mapping adaptation. The results confirm that mappings must be individually adapted according to the different types of ontology change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.