Drought is a major constraint of forest productivity and tree growth across diverse habitat types. In this study, we investigated the drought responses of four conifer species growing within two locations of differing elevation and climatic conditions in northern Mexico. Two species were selected at a mesic site (Cupressus lusitanica Mill., Abies durangensis Martínez) and the other two species were sampled at a xeric site (Pinus engelmannii Carr., Pinus cembroides Zucc.). Using a dendrochronological approach, we correlated the radial-growth series of each species and the climatic variables. All study species positively responded to wet-cool conditions during winter and spring. Despite the close proximity of species at a mesic site, A. durangensis had high responsiveness to hydroclimatic variability, but C. lusitanica was not responsive. At the xeric site, P. engelmannii and P. cembroides were very responsive to drought severity, differentiated only by the longer time scale of the response to accumulated drought of P. engelmannii. The responsiveness to hydroclimate and drought of these tree species seems to be modulated by site conditions, or by the functional features of each species that are still little explored. These findings indicate that differentiating between mesic and xeric habitats is a too coarse approach in diverse forests with a high topographic heterogeneity.
Background Forest ecosystems are considered among the largest terrestrial carbon sinks. The dynamics of forest carbon depend on where the carbon is stored and its responses to environmental factors, as well as the physiology of the trees. Thus, threatened forest regions with high biodiversity have great scientific importance, such as the Sierra Madre Occidental in Mexico. A comparative analysis of tree species can expand the knowledge of the carbon cycle dynamics and ecological processes in this region. Here, we examined the growth, wood density, and carbon accumulation of two threatened species (Pseudotsuga menziesii and Cupressus lusitanica) to evaluate their hydroclimatic responsiveness. Methods The temporal variations in the carbon accumulation patterns of two co-occurring species (P. menziesii and C. lusitanica) and their sensitivity to the local climate were studied using dendroecological techniques, X-ray densitometry, and allometric equations. Results The results show that the annual carbon accumulation in C. lusitanica is positively associated with the temperature during the current fall, while the carbon accumulation in P. menziesii is correlated with the rainfall during the winter of the previous year. The climatic responses are associated with the intra-annual variations of wood density and ring widths for each species. The ring width was strongly correlated with carbon accumulation in C. lusitanica, while the mean wood density was linked to carbon accumulation in P. menziesii. Discussion This study has implications for the carbon accumulation rates of both species, revealing differences in the carbon capture patterns in response to climatic variations. Although the species coexist, there are variation in the hydroclimatic sensitivity of the annual carbon sequestered by trunks of trees, which would be associated with tree-ring width and/or wood density, i.e., directly by anatomical features. The results are relevant to analyze the response to the variability of climatic conditions expected in the near future of the tree communities of Sierra Madre Occidental. Therefore, this study provides a basis for modeling the long-term carbon budget projections in terrestrial ecosystems in northern Mexico.
Ongoing climate change is expected to alter forests by affecting forest productivity, with implications for the ecological functions of these systems. Despite its great dendrochronological potential, little research has been conducted into the use of wood density as a proxy for determining sensitivity to climate variability in Mexico. The response of Abies durangensis Martínez, in terms of wood density and growth ring width, to monthly climatic values (mean temperature, accumulated precipitation and the drought index SPEI) was analyzed through correlation analysis. Abies durangensis presents a high response, in terms of radial growth, to climatic conditions. Tree-ring widths are more sensitive to hydroclimatic variables, whereas wood density values are more sensitive to temperature. In particular, mean (MeanD) and minimum (MND) wood density values are more sensitive to climate than maximum (MXD). We found very marked spatial variations that indicate that A. durangensis responds differently to drought conditions depending on the indices of density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.