Turbulence models proposed for flow through permeable structures depend on the order of application of time and volume average operators. Two developed methodologies, following the two orders of integration, lead to different governing equations for the statistical quantities. The flow turbulence kinetic energy resulting in each case is different. This paper reviews recently published mathematical models developed for such flows. The concept of double decomposition is discussed and models are classified in terms of the order of application of time and volume averaging operators, among other peculiarities. A total of four major classes of models are identified and a general discussion on their main characteristics is carried out. Proposed equations for turbulence kinetic energy following time-space and space-time integration sequences are derived and similar terms are compared. Treatment of the drag coefficient and closure of the interfacial surface integrals are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.