Environmental impact analyses as well as engineering equipment design can both benefit from reliable modeling of turbulent flow in porous media. A number of natural and engineering systems can be characterized by a permeable structure through which a working fluid permeates. Turbulence models proposed for such flows depend on the order of application of time and volume average operators. Two methodologies, following the two orders of integration, lead to different governing equations for the statistical quantities. This paper reviews recently published methodologies to mathematically characterize turbulent transport in porous media. A new concept, called double-decomposition, is here discussed and models for turbulent transport in porous media are classified in terms of the order of application of the time and volume averaging operators, among other peculiarities.Within