The detection of bovine leukemia virus (BLV) proviral DNA is an important tool to address whether an animal is infected with BLV. Compared with serological assays, real-time PCR accounts for greater sensitivity and can serve as a confirmatory test for the clarification of inconclusive or discordant serological test results. However, the high cost related to real-time PCR assays has limited their systematic inclusion in BLV surveillance and eradication programs. The aim of the present study was to validate a low-cost quantitative real-time PCR. Interestingly, by using SYBR Green detection dye, we were able to reduce the cost of a single reaction by a factor of 5 compared with most common assays based on the use of fluorogenic probes (i.e., TaqMan technology). This approach allowed a highly sensitive and specific detection and quantification of BLV proviral DNA from purified peripheral blood leukocytes and a milk matrix. Due to its simplicity and low cost, our in-house BLV SYBR quantitative real-time PCR might be used either as a screening or as a confirmatory test in BLV control programs.
Vaccination against retroviruses is a challenge because of their ability to stably integrate into the host genome, undergo long-term latency in a proportion of infected cells and thereby escape immune response. Since clearance of the virus is almost impossible once infection is established, the primary goal is to achieve sterilizing immunity. Besides efficacy, safety is the major issue since vaccination has been associated with increased infection or reversion to pathogenicity. In this review, we discuss the different issues that we faced during the development of an efficient vaccine against bovine leukemia virus (BLV). We summarize the historical failures of inactivated vaccines, the efficacy and safety of a live-attenuated vaccine and the economical constraints of further industrial development.
Background
The absence of virus expression during the chronic stage of bovine leukemia virus (BLV) infection and its reactivation upon ex vivo culture has become a long-lived Dogma. During the chronic stage of BLV infection the immune response limits viral replication and the mitotic division of latently infected cells, carrying BLV provirus, allows viral expansion and disease progression towards a lymphoproliferative disorder. Several stressor factors have been associated with animal production and handling. As natural mediator of stress, glucocorticoids are strong immunosuppressive agents; moreover, they can bind long-terminal repeat region of retroviruses and induce viral expression. In the present study, we present a case report describing the spontaneous reactivation of BLV infection in naturally infected cattle.
Case presentation
In order to investigate if virus reactivation occurred in vivo during the course of BLV infection, we followed up for 328 days one Holstein cow (> 3 years) chronically infected with BLV which presented high-proviral loads. This animal was neither lactating nor pregnant. Furthermore, we investigated if a stressor stimulus, in this case the administration of a synthetic glucocorticoid (dexamethasone), could impact the course of BLV infection in three additional cattle. For the first time, we observed a high level of BLV transcripts in a total of four cattle chronically infected with BLV. The detection of viral transcripts corresponding to
pol
gene strongly suggests virus reactivation in these animals. Interestingly, this simultaneous virus reactivation was unrelated to dexamethasone treatment.
Conclusions
We reported for the first time spontaneous and high level of BLV transcriptional activation in cattle chronically infected with BLV. Although virus reactivation was unrelated to dexamethasone treatment, other stressor stimuli might have influenced this outcome. Future studies will be necessary to understand these observations, since the spontaneous virus reactivation presented here might have implications on BLV pathogenesis and transmission.
Electronic supplementary material
The online version of this article (10.1186/s12917-019-1908-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.