The 2012 drought in Northeast Brazil was the harshest in decades, with potentially significant impacts on the vegetation of the unique semi-arid caatinga biome and on local livelihoods. Here, we use a coupled climate-vegetation model (CCM3-IBIS) to: (1) investigate the role of the Pacific and Atlantic oceans in the 2012 drought, and; (2) evaluate the response of the caatinga vegetation to the 2012 climate extreme. Our results indicate that anomalous sea surface temperatures (SSTs) in the Atlantic Ocean were the primary factor forcing the 2012 drought, with Pacific Ocean SST having a larger role in sustaining typical climatic conditions in the region. The drought strongly influenced net primary production in the caatinga, causing a reduction in annual net ecosystem exchange indicating a reduction in amount of CO 2 released to the atmosphere.
Os eventos climáticos extremos demonstram um papel significativo das sociedades, seja por sua intensidade, pela frequência de ocorrência ou pela vulnerabilidade socioambiental. Objetiva-se classificar e quantificar as precipitações na porção leste da região Nordeste (NE) do Brasil através do índice SPI, como também detectar maiores déficits e/ou excesso de precipitação. O Standardized Precipitation Index (SPI) foi utilizado para quantificar déficits de precipitação e identificar eventos secos e chuvosos em diferentes escalas temporais, auxiliando no monitoramento da sua dinâmica temporal. No cálculo do SPI foi utilizado a distribuição gama, e estimados os limites de precipitação que representam a cada categoria do índice. Foram utilizados dados pluviométricos das capitais dos estados que compõem no leste do Nordeste do Brasil, no período de 1961 a 2014 provenientes da Agência Nacional das Águas (ANA). A análise de Ondeletas foi utilizada com objetivo de identificar ciclos de extremos pluviométricos e de suas causas através das escalas temporais detectadas em séries de precipitação para as capitais do leste do Nordeste do Brasil. Os resultados mostraram que as ocorrências de secas foram as maiores em todas as cidades, todavia na categoria extrema os eventos chuvosos revelaram-se mais frequentes. Os anos normais foram os mais persistentes em todas cidades analisadas. Recife apresentou máximas ocorrências de eventos chuvosos. Os eventos com intensidade extrema, seja chuvoso ou seco, ocorreram em boa parte da série em anos de ENOS. O SPI revelou-se uma excelente ferramenta na detecção e no monitoramento de seca/chuvas na região analisada. A presença de escalas temporais relacionadas com eventos ENOS, Dipolo do Atlântico, ciclo de manchas solares e Oscilação Decadal do Pacífico foram identificadas em todas as capitais do leste do NEB. Characterization of Drought Events Based on the Standardized of Precipitation Index for the East NortheastA B S T R A C TExtreme weather events demonstrate a significant role for societies, whether by their intensity, frequency of occurrence or socio-environmental vulnerability. Objective-classify and quantify as precipitation in the eastern portion of the Northeast (NE) of Brazil through the SPI index, as well as detect larger deficits and / or excess occurrence. The Standardized Precipitation Index (SPI) was used to quantify use deficits and to identify dry and rainy events in different temporal variations, helping to monitor their temporal utilization. No SPI calculations were used for gamma distribution, and estimated capture limits representing each category of the index. Rainfall data were used from the capitals of the states that make up the eastern Northeast of Brazil, with no period from 1961 to 2014, Registration of the National Water Agency (ANA). A wave analysis was used to identify extreme rainfall cycles and their causes caused by temporary variations detected in monitoring series for the eastern capitals of Brazil. The results shown as drought occurrences were the highest in all cities, however in the extreme category of rain events most frequently revealed. The normal years were the most persistent in all cities analyzed. Recife presents maximum occurrences of rain events. Extreme intensity events, whether rainy or dry, occur in much of the series in ENSO years. The SPI revealed an excellent tool for detection and monitoring of drought / gloves in the analyzed region. The presence of temporary variations related to ENOS, Atlantic Dipole, sunspot cycle and Pacific Oscillation events are identified in all eastern NEB capitals.Keywords: SPI; extreme rainfall; drought; Wavelet analysis.
Based upon coupled climate simulations driven by present day and conditions resembling the Marine Isotope Stage 31 (WICE-EXP), insofar the West Antarctic Ice Sheet (WAIS) configuration is concerned, we demonstrate that changes in the WAIS orography lead to noticiable changes in the oceanic and atmospheric circulations. Compared with the present day climate, the WICE-EXP is characterized by warmer conditions in the Southern Hemisphere (SH) by up to 5 • C in the polar oceans and up to 2 • C in the Northern Hemisphere (NH). These changes feed back on the atmospheric circulation weakening (strengthening) the extratropical westerlies in the SH (northern Atlantic). Calculations of the Southern Annular Mode (SAM) show that modification of the WAIS induces warmer conditions and a northward shift of the westerly flow, in particular there is a clear weakening of the polar jet. These changes lead to modification of the rate of deep water formation reducing the magnitude of the North Atlantic Deep Water, but enhancing the Antarctic Bottom Water. By evaluating the density flux we have found that the thermal density flux has played a main role in the modification of the meridional overturning circulation. Moreover, the climate anomalies between the WICE-EXP and the present day simulations resemble a bipolar seesaw pattern. These results are in good agreement with paleorecontructions in the framework of the Ocean Drilling and ANDRILL Programs.4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 442 rium in accelerated global oceanic models.
Previous work suggests that changes in seasonality could lead to a 70% reduction in the extent of the Amazon rainforest. The primary cause of the dieback of the rainforest is a lengthening of the dry season due to a weakening of the large-scale tropical circulation. Here we examine these changes in the seasonal cycle. Under present day conditions the Amazon climate is characterized by a zonal separation of the dominance of the annual and semi-annual seasonal cycles. This behavior is strongly modified under greenhouse warming conditions, with the annual cycle becoming dominant throughout the Amazon basin, increasing differences between the dry and wet seasons. In particular, there are substantial changes in the annual cycle of temperature due to the increase in the temperature of the warmest month, but the lengthening of the dry season is believed to be particularly important for vegetation-climate feedbacks. Harmonic analysis performed to regional climate model simulations yields results that differ from the global climate model that it is forced from, with the regional model being more sensitive to changes in the seasonal cycle.
Anomalies of sea surface temperature that occur in some regions of the Equatorial Pacific Ocean are being studied because their cause different impacts and originate in different ways, are the ENOS, Modoki and Canonical. The objective of this work is to identify the climatic causes of the extreme events that occurred in the macro-regions of Alagoas, and at the same time, to compare the effects of ENOS Canonical and Modoki and their classes on the macro-regions of Alagoas. The daily precipitation data for 21 municipalities in the State of Alagoas were obtained through the National Water Agency from 1963 to 2014. EN Modoki and low promoted an increase in rainfall in the Eastern region. EN Fortes, on the other hand, caused a decrease in rainfall in the Sertão. Canonical LN events caused a significant increase in rainfall in the three macro-regions, but the effect was better in LN Forte. During the phases of the Atlantic Dipole, the negative phase generated positive SPI across the state, and in the positive phase, there was a decrease in SPI in the East, and a negative SPI record in Sertão and Agreste. The climatic causes of the extreme events were the combination of semiannual, interannual scales, scale between 1-2 years of ENOS, scale of ENOS extended and scale of 11 years (Dipole and sunspots), potentiating the local total rainfall, and for cases of drought , your absence. It was found, through cluster analysis, similarity between the SPIs of La Niña low and La Niña Canonical, and between El Niño Canonical is linked to El Niño Forte. Mathematically, the categories of El Niño and La Niña strong and weak showed better correlations with ENOS Modoki and Canonical, suggesting a pattern for Alagoas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.