Aim To uncover geographical and temporal patterns of diversification in the puffbird genus Malacoptila, focusing on the influence of landscape and palaeoclimate evolution as drivers of diversification.Location Neotropical, with an emphasis on the Amazon basin.Methods We sequenced eight mtDNA and nuclear gene regions of 176 individuals belonging to seven of the eight recognized Malacoptila species. Concatenated and time calibrated coalescent multi-locus phylogenies, along with a Bayesian species delimitation analysis, were performed for the genus. Phylogeographical and historical demography patterns were reconstructed for the Amazonian species. Ancestral ranges estimation was performed in BioGeoBEARS.Results Our analysis recovered 23 reciprocally monophyletic lineages within Malacoptila. All currently recognized species were recovered as monophyletic. With the exception of M. semicincta, all species presented some level of intraspecific phylogeographical structure, varying up to 10 reciprocally monophyletic phylogroups (M. rufa). The distributions of these lineages are generally coincident with known Neotropical areas of endemism (AE). Main ConclusionOur results corroborate the influence of Andean uplift and the Plio-Pleistocene establishment of the current drainage system in Amazonia as likely drivers of diversification. The spatially structured genetic diversity that exists within Malacoptila is underestimated by current taxonomy and provides another example of widespread cryptic avian endemism in the Neotropics.
In recent years, carbon dioxide emissions have been potentiated by several anthropogenic processes that culminate in climate change, which in turn directly threatens biodiversity and the resilience of natural ecosystems. Tropical rainforests are among the most impacted biological realms. The Belé m endemism center, which is one of the several endemism centers in Amazon, is located in the most affected area within the so-called "Deforestation Arc." Moreover, this region harbors a high concentration of Amazonian endangered bird species, of which 56% of them are considered to be under the threat of extinction. In this work, we sought to evaluate the current and future impacts of both climate change and deforestation on the distribution of endemic birds in the Belé m Area of Endemism (BEA). Thus, we generated species distribution models for the 16 endemic bird species considering the current and two future gas emission scenarios (optimistic and pessimistic). We also evaluated climate change impacts on these birds in three different dispersal contexts. Our results indicate that BAE, the endemic taxa will lose an average of 73% of suitable areas by 2050. At least six of these birds species will have less than 10% or no future suitable habitat in all emission scenarios. One of the main mechanisms used to mitigate the impacts of climate change on these species in the near future is to assess the current system of protected areas. It is necessary to ensure that these areas will continue being effective in conserving these species even under climate change. The "Gurupi Mosaic" and the "Rio-Capim" watershed are areas of great importance because they are considered climate refuges according to our study. Thus, conservation efforts should be directed to the maintenance and preservation of these two large remnants of vegetation in addition to creating ecological corridors between them.
Knowledge of spatiotemporal distribution of biodiversity is still very incomplete in the tropics. This is one of the major problems preventing the assessment and effectiveness of conservation actions. Mega-diverse tropical regions are being exposed to fast and profound environmental changes, and the amount of resources available to describe the distribution of species is generally limited. Thus, the tropics is losing species at unprecedented rates, without a proper assessment of its biodiversity. Species distribution models (SDMs) can be used to fill such biogeographic gaps within a species’ range and, when allied with systematic conservation planning (e.g. analyses of representativeness, gap analysis), help transcend such data shortage and support practical conservation actions. Within the Neotropics, eastern Amazon and northern Cerrado present a high variety of environments and are some of the most interesting ecotonal areas within South America, but are also among the most threatened biogeographic provinces in the world. Here, we test the effectiveness of the current system of Protected Areas (PAs), in protecting 24 threatened and endemic bird species using SDMs. We found that taxa with wider distributions are potentially as protected as taxa with smaller ranges, and larger PAs were more efficient than smaller PAs, while protecting these bird species. Nonetheless, Cerrado PAs are mostly misallocated. We suggest six priority areas for conservation of Neotropical birds. Finally, we highlight the importance of indigenous lands in the conservation of Neotropical biodiversity, and recommend the development of community management plans to conserve the biological resources of the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.