The Northern Great Plains is a key region to global food production. It is also a region of water stress that includes poor water quality associated with high concentrations of nutrients. Agricultural nitrogen and phosphorus loads to surface waters need to be reduced, yet the unique characteristics of this environment create challenges. The biophysical reality of the Northern Great Plains is one where snowmelt is the major period of nutrient transport, and where nutrients are exported predominantly in dissolved form. This limits the efficacy of many beneficial management practices (BMPs) commonly used in other regions and necessitates place-based solutions. We discuss soil and water management BMPs through a regional lens—first understanding key aspects of hydrology and hydrochemistry affecting BMP efficacy, then discussing the merits of different BMPs for nutrient control. We recommend continued efforts to “keep water on the land” via wetlands and reservoirs. Adoption and expansion of reduced tillage and perennial forage may have contributed to current nutrient problems, but both practices have other environmental and agronomic benefits. The expansion of tile and surface drainage in the Northern Great Plains raises urgent questions about effects on nutrient export and options to mitigate drainage effects. Riparian vegetation is unlikely to significantly aid in nutrient retention, but when viewed against an alternative of extending cultivation and fertilization to the waters’ edge, the continued support of buffer strip management and refinement of best practices (e.g., harvesting vegetation) is merited. While the hydrology of the Northern Great Plains creates many challenges for mitigating nutrient losses, it also creates unique opportunities. For example, relocating winter bale-grazing to areas with low hydrologic connectivity should reduce loadings. Managing nutrient applications must be at the center of efforts to mitigate eutrophication. In this region, ensuring nutrients are not applied during hydrologically sensitive periods such as late autumn, on snow, or when soils are frozen will yield benefits. Working to ensure nutrient inputs are balanced with crop demands is crucial in all landscapes. Ultimately, a targeted approach to BMP implementation is required, and this must consider the agronomic and economic context but also the biophysical reality.
Abstract. Etrophication and flooding are perennial problems in agricultural watersheds of the northern Great Plains. A high proportion of annual runoff and nutrient transport occurs with snowmelt in this region. Extensive surface drainage modification, frozen soils, and frequent backwater or icedamming impacts on flow measurement represent unique challenges to accurately modelling watershed-scale hydrological processes. A physically based, non-calibrated model created using the Cold Regions Hydrological Modelling platform (CRHM) was parameterized to simulate hydrological processes within a low slope, clay soil, and intensively surface drained agricultural watershed. These characteristics are common to most tributaries of the Red River of the north. Analysis of the observed water level records for the study watershed (La Salle River) indicates that ice cover and backwater issues at time of peak flow may impact the accuracy of both modelled and measured streamflows, highlighting the value of evaluating a non-calibrated model in this environment. Simulations best matched the streamflow record in years when peak and annual discharges were equal to or above the medians of 6.7 m 3 s −1 and 1.25 ×10 7 m 3 , respectively, with an average Nash-Sutcliffe efficiency (NSE) of 0.76. Simulation of low-flow years (below the medians) was more challenging (average NSE < 0), with simulated discharge overestimated by 90 % on average. This result indicates the need for improved understanding of hydrological response in the watershed under drier conditions. Simulation during dry years was improved when infiltration was allowed prior to soil thaw, indicating the potential importance of preferential flow. Representation of in-channel dynamics and travel time under the flooded or ice-jam conditions should also receive attention in further model development efforts. Despite the complexities of the study watershed, simulations of flow for average to high-flow years and other components of the water balance were robust (snow water equivalency (SWE) and soil moisture). A sensitivity analysis of the flow routing model suggests a need for improved understanding of watershed functions under both dry and flooded conditions due to dynamic routing conditions, but overall CRHM is appropriate for simulation of hydrological processes in agricultural watersheds of the Red River. Falsifications of snow sublimation, snow transport, and infiltration to frozen soil processes in the validated base model indicate that these processes were very influential in stream discharge generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.