Motivation Image augmentation is a frequently used technique in computer vision and has been seeing increased interest since the popularity of deep learning. Its usefulness is becoming more and more recognized due to deep neural networks requiring larger amounts of data to train, and because in certain fields, such as biomedical imaging, large amounts of labelled data are difficult to come by or expensive to produce. In biomedical imaging, features specific to this domain need to be addressed. Results Here we present the Augmentor software package for image augmentation. It provides a stochastic, pipeline-based approach to image augmentation with a number of features that are relevant to biomedical imaging, such as z-stack augmentation and randomized elastic distortions. The software has been designed to be highly extensible meaning an operation that might be specific to a highly specialized task can easily be added to the library, even at runtime. Although it has been designed as a general software library, it has features that are particularly relevant to biomedical imaging and the techniques required for this domain. Availability and implementation Augmentor is a Python package made available under the terms of the MIT licence. Source code can be found on GitHub under https://github.com/mdbloice/Augmentor and installation is via the pip package manager (A Julia version of the package, developed in parallel by Christof Stocker, is also available under https://github.com/Evizero/Augmentor.jl).
The generation of artificial data based on existing observations, known as data augmentation, is a technique used in machine learning to improve model accuracy, generalisation, and to control overfitting. Augmentor is a software package, available in both Python and Julia versions, that provides a high level API for the expansion of image data using a stochastic, pipeline-based approach which effectively allows for images to be sampled from a distribution of augmented images at runtime. Augmentor provides methods for most standard augmentation practices as well as several advanced features such as labelpreserving, randomised elastic distortions, and provides many helper functions for typical augmentation tasks used in machine learning.
BackgroundThe process of creating and designing Virtual Patients for teaching students of medicine is an expensive and time-consuming task. In order to explore potential methods of mitigating these costs, our group began exploring the possibility of creating Virtual Patients based on electronic health records. This review assesses the usage of electronic health records in the creation of interactive Virtual Patients for teaching clinical decision-making.MethodsThe PubMed database was accessed programmatically to find papers relating to Virtual Patients. The returned citations were classified and the relevant full text articles were reviewed to find Virtual Patient systems that used electronic health records to create learning modalities.ResultsA total of n = 362 citations were found on PubMed and subsequently classified, of which n = 28 full-text articles were reviewed. Few articles used unformatted electronic health records other than patient CT or MRI scans. The use of patient data, extracted from electronic health records or otherwise, is widespread. The use of unformatted electronic health records in their raw form is less frequent. Patient data use is broad and spans several areas, such as teaching, training, 3D visualisation, and assessment.ConclusionsVirtual Patients that are based on real patient data are widespread, yet the use of unformatted electronic health records, abundant in hospital information systems, is reported less often. The majority of teaching systems use reformatted patient data gathered from electronic health records, and do not use these electronic health records directly. Furthermore, many systems were found that used patient data in the form of CT or MRI scans. Much potential research exists regarding the use of unformatted electronic health records for the creation of Virtual Patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.