In the search for new drug targets, we evaluated the biotin synthetic pathway of Mycobacterium tuberculosis (Mtb) and constructed an Mtb mutant lacking the biotin biosynthetic enzyme 7,8-diaminopelargonic acid synthase, BioA. In biotin-free synthetic media, ΔbioA did not produce wild-type levels of biotinylated proteins, and therefore did not grow and lost viability. ΔbioA was also unable to establish infection in mice. Conditionally-regulated knockdown strains of Mtb similarly exhibited impaired bacterial growth and viability in vitro and in mice, irrespective of the timing of transcriptional silencing. Biochemical studies further showed that BioA activity has to be reduced by approximately 99% to prevent growth. These studies thus establish that de novo biotin synthesis is essential for Mtb to establish and maintain a chronic infection in a murine model of TB. Moreover, these studies provide an experimental strategy to systematically rank the in vivo value of potential drug targets in Mtb and other pathogens.
Tetracycline repressor (TetR)-controlled expression systems have recently been developed for mycobacteria and proven useful for the construction of conditional knockdown mutants and their analysis in vitro and during infections. However, even though these systems allowed tight regulation of some mycobacterial genes, they only showed limited or no phenotypic regulation for others. By adapting their codon usage to that of the Mycobacterium tuberculosis genome, we created tetR genes that mediate up to ∼50-fold better repression of reporter gene activities in Mycobacterium smegmatis and Mycobacterium bovis BCG. In addition to these repressors, for which anhydrotetracycline (atc) functions as an inducer of gene expression, we used codon-usage adaption and structure-based design to develop improved reverse TetRs, for which atc functions as a corepressor. The previously described reverse repressor TetR only functioned when expressed from a strong promoter on a multicopy plasmid. The new reverse TetRs silence target genes more efficiently and allowed complete phenotypic silencing of M. smegmatis secA1 with chromosomally integrated tetR genes.
Regulatory proteins often communicate with each other to manage various cellular processes. Such interactions mostly rely on the recognition of small peptide motifs. The activity of other regulatory proteins depends on small molecular weight effectors and allostery. We demonstrate the in vivo regulation of the tetracyclinedependent Tet repressor by an oligopeptide fused to the N or C terminus of thioredoxin A. The binding site of the peptide overlaps but is not identical with the tetracycline binding site. Several TetR mutants that are noninducible by tetracycline also respond to the peptide. This demonstrates for the first time the conversion of a small molecular weight effector-dependent regulator to a protein-protein contact-dependent potential member of designed signaling chains.
We identified an RNA aptamer that induces TetR-controlled gene expression in Escherichia coli when expressed in the cell. The aptamer was found by a combined approach of in vitro selection for TetR binding and in vivo screening for TetR induction. The smallest active aptamer folds into a stem-loop with an internal loop interrupting the stem. Mutational analysis in vivo and in-line probing in vitro reveal this loop to be the protein binding site. The TetR-inducing activity of the aptamer directly correlates with its stability and the best construct is as efficient as the natural inducer tetracycline. Because of its small size, high induction efficiency, and the stability of the TetR aptamer under in vivo conditions, it is well suited to be an alternative RNA-based inducer of TetR-controlled gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.