Recent reports of increased tolerance to artemisinin derivatives-the last widely effective class of antimalarials -bolster the medical need for new treatments. The spirotetrahydro-β-carbolines, or spiroindolones, are a new class of fast-acting and potent schizonticidal drugs displaying low nanomolar potency against Plasmodium falciparum and Plasmodium vivax clinical isolates. Spiroindolones rapidly diminish protein synthesis in P. falciparum, an effect that is ablated in parasites bearing non-synonymous mutations in the gene encoding the P-type cation-transporter ATPase4 (PfATP4). The optimized spiroindolone NITD609 shows an acceptable safety profile and pharmacokinetic properties compatible with once-daily oral dosing; and demonstrates singledose efficacy in a rodent malaria model. Collectively, these data demonstrate that NITD609 possesses a pharmacological profile suitable for a new drug candidate for the treatment of malaria.Globally, 3.3 billion people are exposed to malaria, a devastating disease that causes over 800,000 deaths each year and kills more under five-year-olds than any other infectious agent (1). Fifty years ago, malaria had been eliminated from many areas of the world through effective antimalarial drug treatments, vector control interventions and disease prevention # Corresponding authors (Winzeler@scripps.edu and Thierry.diagana@novartis.com). * These authors equally contributed to this work One-sentence summary We describe the pharmacological profile of a new antimalarial drug candidate-the spiroindolone NITD609-which through a novel mechanism of action rapidly clears a Plasmodium infection upon administration of a single oral dose in a malaria mouse model. NIH Public Access Author ManuscriptScience. Author manuscript; available in PMC 2011 September 3. (2). However, the global spread of drug resistance resulted, by the 1980s, in a substantial increase in disease incidence and mortality. Today, some encouraging epidemiological data suggest that the introduction of new drugs (notably the artemisinin-based combination therapies or ACTs) may have reversed that trend (3). Derivatives of the endoperoxide artemisinin constitute the only antimalarial drugs that remain effective in all malariaendemic regions, but recent reports suggest that decades of continuous use as monotherapies might have fostered the emergence of resistance (4-6). This realization has triggered a concerted search for new drugs that could be deployed if artemisinin resistance were to spread.Many of the therapies currently in development utilize known antimalarial pharmacophores (e.g. aminoquinolines and/or peroxides) chemically modified to overcome the liabilities of their predecessors (7). While these compounds may prove to be important in the treatment of malaria, it would be preferable to discover novel chemotypes with a distinct mechanism of action (8). However, despite significant advances in our understanding of Plasmodium genome biology, the identification and validation of new drug targets has proven challengi...
The endoplasmic reticulum (ER) and the Golgi comprise the first two steps in protein secretion. Vesicular carriers mediate a continuous flux of proteins and lipids between these compartments, reflecting the transport of newly synthesized proteins out of the ER and the retrieval of escaped ER residents and vesicle machinery. Anterograde and retrograde transport is mediated by distinct sets of cytosolic coat proteins, the COPII and COPI coats, respectively, which act on the membrane to capture cargo proteins into nascent vesicles. We review the mechanisms that govern coat recruitment to the membrane, cargo capture into a transport vesicle, and accurate delivery to the target organelle.
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.