Question classification plays an important role in question answering. Features are the key to obtain an accurate question classifier. In contrast to Li and Roth (2002)'s approach which makes use of very rich feature space, we propose a compact yet effective feature set. In particular, we propose head word feature and present two approaches to augment semantic features of such head words using WordNet. In addition, Lesk's word sense disambiguation (WSD) algorithm is adapted and the depth of hypernym feature is optimized. With further augment of other standard features such as unigrams, our linear SVM and Maximum Entropy (ME) models reach the accuracy of 89.2% and 89.0% respectively over a standard benchmark dataset, which outperform the best previously reported accuracy of 86.2%.
We present a graph-based semi-supervised learning for the question-answering (QA) task for ranking candidate sentences. Using textual entailment analysis, we obtain entailment scores between a natural language question posed by the user and the candidate sentences returned from search engine. The textual entailment between two sentences is assessed via features representing high-level attributes of the entailment problem such as sentence structure matching, question-type named-entity matching based on a question-classifier, etc. We implement a semi-supervised learning (SSL) approach to demonstrate that utilization of more unlabeled data points can improve the answer-ranking task of QA. We create a graph for labeled and unlabeled data using match-scores of textual entailment features as similarity weights between data points. We apply a summarization method on the graph to make the computations feasible on large datasets. With a new representation of graph-based SSL on QA datasets using only a handful of features, and under limited amounts of labeled data, we show improvement in generalization performance over state-of-the-art QA models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.