Starch is widely used as an ingredient and significantly contributes to texture, appearance, and overall acceptability of cereal based foods, playing an important role due to its ability to form a matrix, entrapping air bubbles. A detailed characterisation of five gluten-free starches (corn, wheat, rice, tapioca, potato) was performed in this study. In addition, the influence of these starches, with different compositional and morphological properties, was evaluated on a simple gluten-free model bread system. The morphological characterisation, evaluated using scanning electron microscopy, revealed some similarities among the starches, which could be linked to the baking performance of the breads. Moreover, the lipid content, though representing one of the minor components in starch, was found to have an influence on pasting, bread making, and staling. Quality differences in cereal root and tuber starch based breads were observed. However, under the baking conditions used, gluten-free rendered wheat starch performed best, followed by potato starch, in terms of loaf volume and cell structure. Tapioca starch and rice starch based breads were not further analysed, due to an inferior baking performance. This is the first study to evaluate gluten-free starch on a simple model bread system.
Although bread making with the use of Baker's yeast has a long tradition in human history, little attention has been paid to the connection between yeast addition and the final bread quality. Nowadays, bakers mainly use different flour additives such as enzymes (amylases, hemicellulases, and proteases) to change and improve dough properties and/or bread quality. Another strategy is the use of modified industrial Baker's yeast. To date, there is no yeast strain used in the baking industry, which is genetically modified, despite some studies demonstrating that the application of recombinant DNA technology is a possibility for improved strains suitable for baking. However, due to the fact that the majority of consumers in Europe highly reject the use of genetically modified microorganisms in the production of food, other strategies to improve bread quality must be investigated. Such a strategy would be a reconsideration of the selection of yeast strains used for the baking process. Next to the common criteria, the requirement for adequate gas production, more attention should be paid on how yeast impacts flavor, shelf life, color, and the nutritional value of baked products, in a similar way to which yeast strains are selected in the wine and brewing industries.
This study presents an analytical method for the quantification of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) in cereals and cereal-based products, considering diverse ingredients, such as different cereals in addition to wheat, pulses, or pseudocereals. All carbohydrates have been separated, identified, and quantified with a highperformance anion-exchange chromatographic system coupled with a pulsed amperometric detection (HPAEC-PAD). The total fructan content and the average degree of polymerization (DP av ) have been determined after enzymatic hydrolysis to the monomers glucose and fructose, on the basis of the principle of the official method for fructan quantification in food products, AOAC 997.08. The methods for extraction, separation, and detection as well as fructan determination are based on several other studies and were modified in order to minimize interferences in the analysis. The method has been validated with regard to the limits of detection and quantification, the linearity, the repeatability, and the accuracy as well as the DP av of the fructans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.