The dietary intake of sodium chloride has increased considerably over the last few decades due to changes in the human diet. This higher intake has been linked to a number of diseases including hypertension and other cardiovascular diseases. Numerous international health agencies, as well as the food industry, have now recommended a salt intake level of about 5-6 g daily, approximately half the average current daily intake level. Cereal products, and in particular bread, are a major source of salt in the diet. Therefore, any reduction in the level of salt in bread would have a major impact on global health. However, salt is a critical ingredient in bread production, and its reduction can have a deleterious effect on the production process. This includes an impact on dough handling, as well as final bread quality characteristics, including shelf-life, bread volume, and sensory characteristics, all deviating from the expectations of bakers and consumers. This review describes the effect of salt reduction during bread production and the resulting problems, both technological and qualitative, as well as evaluating some techniques commonly used to replace sodium chloride.
Starch is widely used as an ingredient and significantly contributes to texture, appearance, and overall acceptability of cereal based foods, playing an important role due to its ability to form a matrix, entrapping air bubbles. A detailed characterisation of five gluten-free starches (corn, wheat, rice, tapioca, potato) was performed in this study. In addition, the influence of these starches, with different compositional and morphological properties, was evaluated on a simple gluten-free model bread system. The morphological characterisation, evaluated using scanning electron microscopy, revealed some similarities among the starches, which could be linked to the baking performance of the breads. Moreover, the lipid content, though representing one of the minor components in starch, was found to have an influence on pasting, bread making, and staling. Quality differences in cereal root and tuber starch based breads were observed. However, under the baking conditions used, gluten-free rendered wheat starch performed best, followed by potato starch, in terms of loaf volume and cell structure. Tapioca starch and rice starch based breads were not further analysed, due to an inferior baking performance. This is the first study to evaluate gluten-free starch on a simple model bread system.
The consumption of low-salt bread represents an efficient way to improve public health by decreasing cardiovascular health issues related to increased intakes of sodium chloride (NaCl). The reduction of NaCl influences the bread quality characteristics, in particular the shelf-life. Calcium propionate (CP) is commonly used in bread as an antifungal agent. Alternatively, sourdough can be used as a natural preservative. This work addresses the feasibility of NaCl reduction in wheat bread focussing on shelf-life and the compensation using sourdough as well as chemical preservatives. The impact of NaCl reduction and the addition of preservative agents in conjunction with different NaCl concentrations on the shelf-life of bread were tested under 'environmental' conditions in a bakery as well as using challenge tests against selected fungi. The challenge tests were performed using fungi commonly found in the bakery environment such as Penicillium expansum, Fusarium culmorum and Aspergillus niger. NaCl reduction decreased the shelf-life by 1-2 days. The addition of sourdough with antifungal activity prolonged the shelf-life to 12-14 days whereas the addition of 0.3 % calcium propionate prolonged the shelf-life to 10-12 days only. The fungal challenge tests revealed differences in the determined shelf-life between the different fungi based on their resistance. Similar antifungal performance was observed in sourdough breads and calcium propionate breads when tested against the different indicator moulds. The findings of this study indicate that addition of sourdough fermented using a specifically selected antifungal Lactobacillus amylovorus DSM 19280 can replace the chemical preservative calcium propionate addition and compensate for the reduced level and, therefore, guarantee the product safety of low-salt bread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.