High electric fields that occur in thunderstorm clouds in the Earth's atmosphere might accelerate energetic charged particles produced by cosmic rays. Such energetic particles, especially electrons, can cause additional ionization as they are multiplied and thus form avalanche of relativistic electrons. These relativistic electrons emit Bremsstrahlung in the X-or gamma-ray spectral ranges as they lose their kinetic energy via collisions. Thunderstorm ground enhancements (TGEs) of secondary cosmic ray fluxes recorded at the top of a sharp rocky mountain of Lomnický Štít in High Tatras (2634 m, Slovak Republic) are compared with simultaneous measurements of electric field at the mountain top and on its slope at the observatory of Skalnaté Pleso (1780 m). Results of measurements performed from May to September in 2017 and from May to October in 2018 are presented. The cosmic ray flux is measured by Space Environment Viewing and Analysis Network (SEVAN) and by neutron monitor with 1-s resolution. The TGEs that persisted usually several minutes were mainly detected in the SEVAN channel 1 which has the lowest energy threshold, about 7-8 MeV. A statistical analysis shows that these enhancements usually occurred (not only) during large values of vertical, upward-pointing electric fields measured just above the detector. It is shown that the measurement of electric field at Skalnaté Pleso, distant about 1.86 km from the mountain top is also partly correlated with the enhancements and can provide additional useful information about the distance or dimension of charge structure and dynamics of electric field, especially on short time scales. The enhancements usually did not exceed several tens of percent of background values. However, events that exceeded the background values several times were also recorded. The most extreme event exceeded the background values about 215 times. This event was also detected by other SEVAN channels and by the neutron monitor (~ 130% enhancement), which indicates a possibility of photonuclear reactions. The enhancements were often terminated by a nearby lightning.
Since March 2014, there is a continuous measurement of secondary cosmic rays by the detector system SEVAN (Space Environmental Viewing and Analysis Network) at Lomnický štít, altitude 2,634 m above sea level. Starting from June 2016, the count rates (1 s resolution) obtained from the three SEVAN detectors and from their coincidences are available, along with selected meteorological characteristics. Since 30 May 2016 the electric field measurements have been installed at the same site. Several events with clear increase of the count rate in the upper detector of SEVAN were observed during the thunderstorms until 17 September 2016. Examples of these measurements are presented and discussed. Barometric pressure correction and elimination of low‐frequency variability from the signal allow to extract 2 min averaged increases from the data. It is shown that the 2 min averaged increases of count rates measured by SEVAN correspond with periods of high electric field (with higher probability during negative polarity) rather than with the individual discharges (lightning).
A relationship between the heliospheric magnetic field, atmospheric electric field, lightning activity, and secondary cosmic rays measured on the high mount of Lomnický Štít (2,634 m a.s.l.), Slovakia, during the declining phase of the solar cycle 24 is investigated with a focus on variations related to solar rotation (about 27 days). The secondary cosmic rays are detected using a neutron monitor and the detector system SEVAN, which distinguishes between different particles and energies. Using spectral analysis, we found distinct ∼27-day periodicities in variations of Bx and By components of the heliospheric magnetic field and in pressure-corrected measurements of secondary cosmic rays. The 27-day variations of secondary cosmic rays, on average, advanced and lagged the variations of Bx and By components by about 40° and −140°, respectively. Distinct 27-day periodicities were found both in the neutron monitor and the SEVAN upper and middle detector measurements. A nondominant periodicity of ∼27 days was also found for lightning activity. A cross-spectral analysis between fluctuation of the lightning activity and fluctuation of the heliospheric magnetic field (HMF) showed that fluctuation of the lightning activity was in phase and in antiphase with Bx and By components of the HMF, respectively, which is in agreement with previous studies investigating the influence of solar activity on lightning. On the other hand, the ∼27-day periodicity was not significant in the atmospheric electric field measured in Slovakia and Czechia. Therefore, no substantial influence of Bx and By on the atmospheric electric field was observed at these middle-latitude stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.