Ionospheric signatures possibly induced by the Nepal earthquake are investigated far outside the epicentral region in Taiwan (~3700 km distance from the epicenter) and in the Czech Republic (~6300 km distance from the epicenter). It is shown that the ionospheric disturbances were caused by long period,~20 s, infrasound waves that were excited locally by vertical component of the ground surface motion and propagated nearly vertically to the ionosphere. The infrasound waves are heavily damped at the heights of F layer at around 200 km, so their amplitude strongly depends on the altitude of observation. In addition, in the case of continuous Doppler sounding, the value of the Doppler shift depends not only on the advection (up and down motion) of the reflecting layer but also on the compression/ rarefaction of the electron gas and hence on the electron density gradient. Consequently, under significant differences of reflection height of sounding radio waves and partly also under large differences in plasma density gradients, the observed ionospheric response at larger distances from the epicenter can be comparable with the ionospheric response observed at shorter distances, although the amplitudes of causative seismic motions differ by more than one order of magnitude.
The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.
High electric fields that occur in thunderstorm clouds in the Earth's atmosphere might accelerate energetic charged particles produced by cosmic rays. Such energetic particles, especially electrons, can cause additional ionization as they are multiplied and thus form avalanche of relativistic electrons. These relativistic electrons emit Bremsstrahlung in the X-or gamma-ray spectral ranges as they lose their kinetic energy via collisions. Thunderstorm ground enhancements (TGEs) of secondary cosmic ray fluxes recorded at the top of a sharp rocky mountain of Lomnický Štít in High Tatras (2634 m, Slovak Republic) are compared with simultaneous measurements of electric field at the mountain top and on its slope at the observatory of Skalnaté Pleso (1780 m). Results of measurements performed from May to September in 2017 and from May to October in 2018 are presented. The cosmic ray flux is measured by Space Environment Viewing and Analysis Network (SEVAN) and by neutron monitor with 1-s resolution. The TGEs that persisted usually several minutes were mainly detected in the SEVAN channel 1 which has the lowest energy threshold, about 7-8 MeV. A statistical analysis shows that these enhancements usually occurred (not only) during large values of vertical, upward-pointing electric fields measured just above the detector. It is shown that the measurement of electric field at Skalnaté Pleso, distant about 1.86 km from the mountain top is also partly correlated with the enhancements and can provide additional useful information about the distance or dimension of charge structure and dynamics of electric field, especially on short time scales. The enhancements usually did not exceed several tens of percent of background values. However, events that exceeded the background values several times were also recorded. The most extreme event exceeded the background values about 215 times. This event was also detected by other SEVAN channels and by the neutron monitor (~ 130% enhancement), which indicates a possibility of photonuclear reactions. The enhancements were often terminated by a nearby lightning.
Since March 2014, there is a continuous measurement of secondary cosmic rays by the detector system SEVAN (Space Environmental Viewing and Analysis Network) at Lomnický štít, altitude 2,634 m above sea level. Starting from June 2016, the count rates (1 s resolution) obtained from the three SEVAN detectors and from their coincidences are available, along with selected meteorological characteristics. Since 30 May 2016 the electric field measurements have been installed at the same site. Several events with clear increase of the count rate in the upper detector of SEVAN were observed during the thunderstorms until 17 September 2016. Examples of these measurements are presented and discussed. Barometric pressure correction and elimination of low‐frequency variability from the signal allow to extract 2 min averaged increases from the data. It is shown that the 2 min averaged increases of count rates measured by SEVAN correspond with periods of high electric field (with higher probability during negative polarity) rather than with the individual discharges (lightning).
Results of systematic analysis of propagation directions and horizontal velocities of gravity waves (GWs) and spread F structures in low-latitude ionosphere (magnetic inclination~27°) in Tucumán region, Argentina, are presented. Measurements were carried out by multipoint continuous Doppler system during 1 year from December 2012 to November 2013. It was found that meridian propagation of GWs dominated and that southward propagation prevailed in the local summer. Oblique spread structures observed in Doppler shift spectrograms and associated with spread F propagated roughly eastward at velocities from 70 to~180 m/s and were observed at night from~September to~March. The velocities were computed for 182 events and the azimuths for 64 events. Continuous Doppler sounding makes it possible to analyze more events compared to optical observations often used for propagation studies since the measurements do not depend on weather.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.