There is increasing evidence that platinum group elements (PGE) are pollutants of emerging concern worldwide. Limited information exists on levels, particularly in regions where PGEs are mined. A passive sampling device (i.e., the artificial mussel (AM)) and transplanted indicator organisms (i.e., the freshwater clam Corbicula fluminalis africana) were deployed along a PGE mining gradient in the Hex River, South Africa, and concentrations of As, Cd, Co, Cr, Ni, Pb, Pt, V, and Zn were determined after six weeks of exposure. Results showed differential uptake patterns for Pt, Cr, and Ni between the AMs and clams indicating availability differences. For monitoring purposes, a combination of AMs and indicator organisms provides a more holistic assessment of element exposure in aquatic environments.
Background The artificial mussel (AM) is a passive sampling device that was originally developed for monitoring metal concentrations in the marine environment, but is also increasingly used in freshwater environments. The AM consists of a non-permeable Perspex tube, which is closed on both sides with a semi-permeable membrane. The space in between contains Chelex-100 beads, which bind metals. The AM allows the determination of the dissolved, bioaccessible metal fraction in water bodies without killing organisms, as well as environments with unfavorable conditions for living bioindicators. In the present study, the use of the AM was adapted for the monitoring of platinum (Pt) in a freshwater ecosystem. Results The elution of Pt from the Chelex-100 beads was optimized. Two modifications to the original method for the use of AMs are recommended, i.e., washing and separation of the beads through centrifugation and elution with a mixture of 4.5 mL HNO3 and 0.5 mL HCl for approximately 2–3 h to ensure the release of all Pt bound to the beads. Additionally, the uptake kinetics of the AM were determined under laboratory conditions over a wide exposure concentration range (0.1–1000 µg/L) showing highly correlated Pt accumulation in the AMs with the aqueous exposure concentration. For the tested Pt exposure concentrations of 0.1, 1, 10, and 100 µg/L, the Pt concentrations in the AMs increased during the exposure period of 6 weeks. At the highest exposure concentration of 1000 µg/L, the increase stagnated after 3 weeks. To validate the AM in the field, the Pt accumulation of the AM was assessed together with that of freshwater clams (Corbicula fluminalis africana), muscle and liver tissue of the three fish species sharptooth catfish (Clarias gariepinus), common carp (Cyprinus carpio) and Mozambique tilapia (Oreochromis mossambicus), as well as water hyacinths (Eichhornia crassipes) at two sampling sites in the Pt mining area of South Africa. Conclusion Results from the present study showed that the AM is a promising tool to monitor Pt concentrations in the freshwater environment at contaminated sites.
Background The artificial mussel (AM) is a passive sampling device that was originally developed for monitoring metal concentrations in the marine environment but is also increasingly used in freshwater environments. The AM consists of a non-permeable Perspex tube, which is closed on both sides with a semi-permeable membrane. In the space in between are Chelex-100 beads, which bind metals. The AM allows the determination of the dissolved, bioaccessible metal fraction in water bodies without killing organisms, as well as environments with unfavorable conditions for living bioindicators. In the present study, the use of the AM was adapted for the monitoring of platinum (Pt) in a freshwater ecosystem. Results The elution of Pt from the Chelex-100 beads was optimized. Two modifications to the original method for the use of AMs are recommended, i.e. washing and separation of the beads through centrifugation and elution with a mixture of 4.5 mL HNO3 and 0.5 mL HCl for approximately 2-3 hours to ensure the release of all Pt bound to the beads. Additionally, the uptake kinetics of the AM were determined under laboratory conditions over a wide exposure concentration range (0.1-1000 µg/L) showing highly correlated Pt accumulation in the AMs with the aqueous exposure concentration. For the tested Pt exposure concentrations of 0.1, 1, 10, and 100 µg/L, the Pt concentrations in the AMs increased during the exposure period of 6 weeks. At the highest exposure concentration of 1000 µg/L, the increase stagnated after 3 weeks. To validate the AM in the field, the Pt accumulation of the AM was assessed together with that of freshwater clams (Corbicula fluminalis africana), muscle and liver tissue of three fish species sharptooth catfish (Clarias gariepinus), common carp (Cyprinus carpio) and Mozambique tilapia (Oreochromis mossambicus), as well as water hyacinths (Eichhornia crassipes) at two sampling sites in the Pt mining area of South Africa. Conclusion Results from the present study showed that the AM is a promising tool to monitor Pt concentrations in the freshwater environment at contaminated sites.
BackgroundThe artificial mussel (AM) is a passive sampling device that was originally developed for monitoring metal concentrations in the marine environment but is also increasingly used in freshwater environments. The AM consists of a non-permeable Perspex tube, which contains Chelex-100 resin, water diffuses through the semi-permeable membranes where the metals bind to the Chelex-100. The AM allows for the determination of the dissolved, bioaccessible metal fraction in water bodies without killing organisms, as well as environments with unfavorable conditions for living bioindicators. In the present study, the use of the AM was adapted for the monitoring of platinum (Pt) in a freshwater ecosystem. ResultsTherefore, the elution of Pt from the Chelex-100 beads was optimized. Two modifications to the original method for the use of AMs are recommended, i.e. washing and separation of the beads through centrifugation and elution with a mixture of 4.5 mL HNO3 and 0.5 mL HCl for approximately 2-3 hours to ensure the release of all Pt bound to the beads. Additionally, the uptake kinetics of the AM were determined under laboratory conditions over a wide exposure concentration range (0.1-1000 µg/L) showing highly correlated Pt accumulation in the AMs with the aqueous exposure concentration. For the tested Pt exposure concentrations of 0.1, 1, 10, and 100 µg/L, the Pt concentrations in the AMs increased during the exposure period of 6 weeks. At the highest exposure concentration of 1000 µg/L, the increase stagnated after 3 weeks. To validate the AM in the field, the Pt accumulation of the AM was assessed together with that of freshwater clams (Corbicula fluminalis africana), muscle and liver tissue of three fish species sharptooth catfish (Clarias gariepinus), common carp (Cyprinus carpio) and Mozambique tilapia (Oreochromis mossambicus), as well as water hyacinths (Eichhornia crassipes) at two sampling sites in the Pt mining area of South Africa. ConclusionResults from the present study showed that the AM is a promising tool to monitor Pt concentrations in the freshwater environment at contaminated sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.