The toxicity effects of silver (nAg) and zinc oxide (nZnO) engineered nanoparticles (ENPs) on the duckweed Spirodela punctuta were studied to investigate the potential risks posed by these ENPs towards higher aquatic plants. The influence of media abiotic factors on the stability of the ENPs was also evaluated. Marked agglomeration of ENPs was observed after introduction into testing media whereby large particles settled out of suspension and accumulated at the bottom of testing vessels. The high ionic strength (IS) promoted agglomeration of ENPs because it reduced the inter-particle repulsion caused by a reduction in their surface charge. Low dissolution was observed for nAg, reaching only 0.015% at 1000 mg L(-1), whilst improved dissolution was observed for nZnO, only falling below analytical quantification at 0.1 mg L(-1) and lower. The quantification of free radicals namely, reactive oxygen and nitrogen species (ROS/RNS) and hydrogen peroxide (H2O2), indicated the induction of oxidative stress in plants exposed to the ENPs. A definite dose influence was observed for ROS/RNS volumes in plants exposed to nZnO for 14 days, a response not always observed. The total antioxidant capacity (TAC) and superoxide dismutase (SOD) activity in plants indicated varying degrees of oxidative toxicity caused by exposure to ENPs. This toxicity was driven mainly by particulates in plants exposed to nAg, whilst dissolved Zn(2+) was the main driver for toxicity in plants exposed to nZnO. Our findings suggest that the toxicity of nAg and nZnO could be caused by both the particulates and ionic forms, as modified by media properties.
Abstract. Environmental flow (E-flow) frameworks advocate holistic, regional-scale, probabilistic E-flow assessments that consider flow and non-flow drivers of change in a socioecological context as best practice. Regional-scale ecological risk assessments of multiple stressors to social and ecological endpoints, which address ecosystem dynamism, have been undertaken internationally at different spatial scales using the relative-risk model since the mid-1990s. With the recent incorporation of Bayesian belief networks into the relativerisk model, a robust regional-scale ecological risk assessment approach is available that can contribute to achieving the best practice recommendations of E-flow frameworks. PROBFLO is a holistic E-flow assessment method that incorporates the relative-risk model and Bayesian belief networks (BN-RRM) into a transparent probabilistic modelling tool that addresses uncertainty explicitly. PROBFLO has been developed to evaluate the socio-ecological consequences of historical, current and future water resource use scenarios and generate E-flow requirements on regional spatial scales. The approach has been implemented in two regional-scale case studies in Africa where its flexibility and functionality has been demonstrated. In both case studies the evidence-based outcomes facilitated informed environmental management decision making, with trade-off considerations in the context of social and ecological aspirations. This paper presents the PROBFLO approach as applied to the Senqu River catchment in Lesotho and further developments and application in the Mara River catchment in Kenya and Tanzania. The 10 BN-RRM procedural steps incorporated in PROBFLO are demonstrated with examples from both case studies. PROBFLO can contribute to the adaptive management of water resources and contribute to the allocation of resources for sustainable use of resources and address protection requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.