We report the first observation of the parity-violating gamma-ray asymmetry A np γ in neutronproton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. A np γ isolates the ∆I = 1, 3 S1 → 3 P1 component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless effective field theory. We measured A np γ = (−3.0 ± 1.4(stat.) ± 0.2(sys.)) × 10 −8 , which implies a DDH weak πN N coupling of h 1 π = (2.6 ± 1.2(stat.) ± 0.2(sys.)) × 10 −7 and a pionless EFT constant of C 3 S 1 → 3 P 1 /C0 = (−7.4 ± 3.5(stat.) ± 0.5(sys.)) × 10 −11 MeV −1 . We describe the experiment, data analysis, systematic uncertainties, and implications of the result.
Nuclear nonproliferation efforts rely on a variety of safeguards to protect sensitive materials in nuclear facilities. The enrichment of fresh light-water-reactor fuel assemblies is verified by several inspectorates using the uranium neutron coincidence collar (UNCL), which uses neutrons from an americium lithium ( 241 AmLi) source to interrogate the assemblies from one side. Eighteen 3 He tubes on the other three sides are used to count the coincidence neutrons from the induced fission reactions. Experiments have shown that 252 Cf could also be used to complete these measurements, providing several benefits over the use of the standard 241 AmLi source. The UNCL is one of the many instruments that will be available for training purposes in the China Center of Excellence for Nuclear Security (COE), which is located in Beijing, China. This thesis contains a detailed characterization of the response of this detector with 252 Cf as compared with 241 AmLi and an analysis of the technical basis for the use of 252 Cf in place of 241 AmLi in the Antech N2071 Neutron Coincidence Collar. This thesis (1) discusses the development a benchmarked, high-fidelity model of the UNCL using Monte Carlo N-Particle Extended (MCNPX), version 2.7.4.a; (2) fully characterizes the detection parameters, including the efficiency profile, die-away time, and deadtime parameters; and (3) demonstrates the technical basis for the replacement of 241 AmLi sources with 252 Cf sources by assessing the penetrability of neutrons from each source, evaluating the statistical uncertainty in the measurements incurred by each source, and investigating the possibility of a higher effective average number of neutrons produced per fission using 252 Cf rather than 241 AmLi. This work demonstrates the suitability of 252 Cf as a substitute for 241 AmLi and in fact shows approximately a 7.5% improvement in counting statistics over the traditional interrogation source at 4% enrichment.
is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.
DOCUMENT AVAILABILITYOnline Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/), a service of the US Dept. of Energy's Office of Scientific and Technical Information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.