The role of specific gut microbes in shaping body composition remains unclear. We transplanted fecal microbiota from adult female twin pairs discordant for obesity into germ-free mice fed low-fat mouse chow, as well as diets representing different levels of saturated fat and fruit and vegetable consumption typical of the USA. Increased total body and fat mass, as well as obesity-associated metabolic phenotypes were transmissible with uncultured fecal communities, and with their corresponding fecal bacterial culture collections. Co-housing mice harboring an obese twin’s microbiota (Ob) with mice containing the lean co-twin’s microbiota (Ln) prevented the development of increased body mass and obesity-associated metabolic phenotypes in Ob cagemates. Rescue correlated with invasion of specific members of Bacteroidetes from the Ln microbiota into Ob microbiota, and was diet-dependent. These findings reveal transmissible, rapid and modifiable effects of diet-by-microbiota interactions.
Dietary guidelines recommend the consumption of whole grains to prevent chronic diseases. Epidemiologic studies support the theory that whole grains are protective against cancer, especially gastrointestinal cancers such as gastric and colon can-cer, and cardiovascular disease. Components in whole grains that may be protective include compounds that affect the gut environment, such as dietary fiber, resistant starch, and oligosaccharides. Whole grains are also rich in compounds that function as antioxidants, such as trace minerals and phenolic compounds, and phytoestrogens, with potential hormonal effects. Other potential mechanisms whereby whole grains may protect against disease include binding of carcinogens and modulation of the glycemic response. Clearly, the range of protective substances in whole grains is impressive and advice to consume additional whole grains is justified. Further study is needed regarding the mechanisms behind this protection so that the most potent protective components of whole grains will be maintained when developing whole grains into acceptable food products for the public.
OBJECTIVE -Cohort studies indicate that cereal fiber reduces the risk of diabetes and coronary heart disease (CHD). Therefore, we assessed the effect of wheat bran on glycemic control and CHD risk factors in type 2 diabetes.
RESEARCH DESIGN AND METHODS-A total of 23 subjects with type 2 diabetes (16 men and 7 postmenopausal women) completed two 3-month phases of a randomized crossover study. In the test phase, bread and breakfast cereals were provided as products high in cereal fiber (19 g/day additional cereal fiber). In the control phase, supplements were low in fiber (4 g/day additional cereal fiber).RESULTS -Between the test and control treatments, no differences were seen in body weight, fasting blood glucose, HbA 1c , serum lipids, apolipoproteins, blood pressure, serum uric acid, clotting factors, homocysteine, C-reactive protein, magnesium, calcium, iron, or ferritin. LDL oxidation in the test phase was higher than that seen in the control phase (12.1 Ϯ 5.4%, P Ͻ 0.034). Of the subjects originally recruited, more dropped out of the study for health and food preference reasons from the control phase (16 subjects) than the test phase (11 subjects).CONCLUSIONS -High-fiber cereal foods did not improve conventional markers of glycemic control or risk factors for CHD in type 2 diabetes over 3 months. Possibly longer studies are required to demonstrate the benefits of cereal fiber. Alternatively, cereal fiber in the diet may be a marker for another component of whole grains that imparts health advantages or a healthy lifestyle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.