In a wide variety of organisms, gametes develop within clusters of interconnected germline cells called cysts. Four major principles guide the construction of most cysts: synchronous division, a maximally branched pattern of interconnection between cells, specific changes in cyst geometry, and cyst polarization. The fusome is a germline-specific organelle that is associated with cyst formation in many insects and is likely to play an essential role in these processes. This review examines the cellular and molecular processes that underlie fusome formation and cyst initiation, construction, and polarization in Drosophila melanogaster. The studies described here highlight the importance of cyst formation to the subsequent development of functional gametes.
SummaryIn metazoans, tissue maintenance and regeneration depend on adult stem cells, which are characterized by their ability to selfrenew and generate differentiating progeny in response to the needs of the tissues in which they reside. In the Drosophila testis, germline and somatic stem cells are housed together in a common niche, where they are regulated by local signals, epigenetic mechanisms and systemic factors. These stem cell populations in the Drosophila testis have the unique advantage of being easy to identify and manipulate, and hence much progress has been made in understanding how this niche operates. Here, we summarize recent work on stem cells in the adult Drosophila testis and discuss the remarkable ability of these stem cells to respond to change within the niche.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.