The inheritance of both the mitochondrial DNA (mtDNA) and the nuclear-encoded extrachromosomal ribosomal DNA (rDNA) has been studied in the myxomycete, Didymium iridis, by DNA-DNA hybridization of labeled probes to total DNA at various stages of the life cycle. Both the mtDNA and rDNA populations rapidly become homogeneous in individuals, but there is a qualitative difference in the patterns of inheritance of these two molecules. One parental rDNA type was preferentially inherited in all crosses; selective replication of this molecule is tentatively proposed as the mechanism of inheritance. In contrast, either parental mtDNA type could be inherited. Since the inherited population of parental mtDNA molecules are not partitioned into cells in this coenocytic organism, no known mechanism of inheritance can explain the rapid and apparently random loss of one parental mtDNA type in individuals.
Regions of the Didymium iridis mitochondrial genome were identified with similarity to typical mitochondrial genes; however, these regions contained numerous stop codons. We used RT-PCR and DNA sequencing to determine whether, through RNA editing, these regions were transcribed into mRNAs that could encode functional proteins. Ten putative gene regions were examined: atp1, atp6, atp8, atp9, cox1, cox2, cyt b, nad4L, nad6, and nad7. The cDNA sequences of each gene could encode a functional mitochondrial protein that was highly conserved compared with homologous genes. The type of editing events and editing sequence features were very similar to those observed in the homologous genes of Physarum polycephalum, though the actual editing locations showed a variable degree of conservation. Edited sites were compared with encoded sites in D. iridis and P. polycephalum for all 10 genes. Edited sequence for a portion of the cox1 gene was available for six myxomycetes, which, when compared, showed a high degree of conservation at the protein level. Different types of editing events showed varying degrees of site conservation with C-to-U base changes being the least conserved. Several aspects of single C insertion editing events led to the preferential creation of hydrophobic amino acid codons that may help to minimize adverse effects on the resulting protein structure.
Similarity searches with Didymium iridis mitochondrial genomic DNA identified six possible ribosomal protein-coding regions, however, each region contained stop codons that would need to be removed by RNA editing to produce functional transcripts. RT-PCR was used to amplify these regions from total RNA for cloning and sequencing. Six functional transcripts were verified for the following ribosomal protein genes: rpS12, rpS7, rpL2, rpS19, rpS3, and rpL16. The editing events observed, such as single C and U nucleotide insertions and a dinucleotide insertion, were consistent with previously observed editing patterns seen in D. iridis. Additionally, a new form of insertional editing, a single A insertion, was observed in a conserved region of the rpL16 gene. While the majority of codons created by editing specify hydrophobic amino acids, a greater proportion of the codons created in these hydrophilic ribosomal proteins called for positively charged amino acids in comparison to the previously characterized hydrophobic respiratory protein genes. This first report of edited soluble mitochondrial ribosomal proteins in myxomycetes expands upon the RNA editing patterns previously seen; there was: a greater proportion of created codons specifying positively charged amino acids, a shift in the codon position edited, and the insertion of single A nucleotides.
An open reading frame (ORF) was found in the mitochondrial genome of the Pan2-16 strain of Didymium iridis that showed high similarity to the NADH dehydrogenase subunit 3 (nad3) gene in other organisms. So far all other typical mitochondrial genes identified in this organism require RNA editing to generate ORFs capable of directing protein synthesis. The D. iridis sequence was compared to the putative nad3 gene in the related myxomycete Physarum polycephalum, which would require editing. Based on this comparison, editing sites could be predicted for the P. polycelphalum gene that would result in the synthesis of a highly conserved ND3 protein between the two organisms. To determine the editing status of the nad3 gene in other D. iridis strains, PCR was used to amplify this region from eight other independent isolates of the A1 Central American interbreeding series. In each case a 378 base pair ORF was detected by PCR amplification and sequencing. Three patterns of sequence variation were observed; however all base substitutions were in the third codon position and silent with respect to the amino acids encoded. The distribution of the sequence variants was mapped geographically. The requirement for RNA editing in all other typical mitochondrial genes of D. iridis and P. polycephalum and the presence of RNA editing in the nad3 gene of P. polycephalum suggest that the D. iridis nad3 gene might have been edited at one time. We propose that the D. iridis nad3 gene may have lost the requirement for RNA editing by reverse transcription of an edited transcript that subsequently was inserted into the genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.