Location-specific forms of agroforestry management can reduce problems in the forest–water–people nexus, by balancing upstream and downstream interests, but social and ecological finetuning is needed. New ways of achieving shared understanding of the underlying ecological and social-ecological relations is needed to adapt and contextualize generic solutions. Addressing these challenges between thirteen cases of tropical agroforestry scenario development across three continents requires exploration of generic aspects of issues, knowledge and participative approaches. Participative projects with local stakeholders increasingly use ‘serious gaming’. Although helpful, serious games so far (1) appear to be ad hoc, case dependent, with poorly defined extrapolation domains, (2) require heavy research investment, (3) have untested cultural limitations and (4) lack clarity on where and how they can be used in policy making. We classify the main forest–water–people nexus issues and the types of land-use solutions that shape local discourses and that are to be brought to life in the games. Four ‘prototype’ games will be further used to test hypotheses about the four problems identified constraining game use. The resulting generic forest–water–people games will be the outcome of the project “Scenario evaluation for sustainable agroforestry management through forest-water-people games” (SESAM), for which this article provides a preview.
Metrics of hydrological mimicry (‘mimetrics’) reflect similarity in ecological structure and/or functions between managed and natural ecosystems. Only the land-surface parts of hydrological cycles are directly visible and represented in local knowledge and water-related legislation. Human impacts on water cycles (HIWC) can, beyond climate change, arise through effects on local and regional hydrological processes, from both reduced and increased water use compared to a natural reference vegetation with which landscape structure and hydrology are aligned. Precipitationsheds, the oceanic and terrestrial origin of rainfall, depend on evapotranspiration and thus on vegetation. The political commitment to reduce agricultural impact on nature requires hydrological mimetrics to trickle down through institutions to actions. Existing metrics do not suffice. For example, the water footprint metric that relates agricultural water use to consumption decisions, suggests minimizing water use is best, ignoring full hydrological impacts. We explore principles, criteria and indicators for understanding HIWC, via modified evapotranspiration, effects on streamflow (downstream impacts) and atmospheric fluxes and precipitation (downwind impacts). Comprehensive HIWC mimetrics for a set of pantropical watersheds suggest hydrological mimicry options for forest-derived land use patterns through intermediate densities of trees with diversity in rooting depth and water use, interacting with soils, crops and livestock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.