By tethering their circular genomes (episomes) to host chromatin, DNA tumor viruses ensure retention and segregation of their genetic material during cell divisions. Despite functional genetic and crystallographic studies, there is little information addressing the 3D structure of these tethers in cells, issues critical for understanding persistent infection by these viruses. Here, we have applied direct stochastic optical reconstruction microscopy (dSTORM) to establish the nanoarchitecture of tethers within cells latently infected with the oncogenic human pathogen, Kaposi's sarcoma-associated herpesvirus (KSHV). Each KSHV tether comprises a series of homodimers of the latency-associated nuclear antigen (LANA) that bind with their C termini to the tandem array of episomal terminal repeats (TRs) and with their N termini to host chromatin. Superresolution imaging revealed that individual KSHV tethers possess similar overall dimensions and, in aggregate, fold to occupy the volume of a prolate ellipsoid. Using plasmids with increasing numbers of TRs, we found that tethers display polymer power law scaling behavior with a scaling exponent characteristic of active chromatin. For plasmids containing a two-TR tether, we determined the size, separation, and relative orientation of two distinct clusters of bound LANA, each corresponding to a single TR. From these data, we have generated a 3D model of the episomal half of the tether that integrates and extends previously established findings from epifluorescent, crystallographic, and epigenetic approaches. Our findings also validate the use of dSTORM in establishing novel structural insights into the physical basis of molecular connections linking host and pathogen genomes.
Background: Many clinicians lack adequate knowledge about emerging standards of care related to genetic cancer risk assessment and the features of hereditary cancer needed to identify patients at risk. Objective: To determine how a clinical cancer genetics education programme for community based clinicians affected participant knowledge and changed clinical practice. Methods: The effects of the programme on participant knowledge and changes in clinical practice were measured through pre and post session knowledge questionnaires completed by 710 participants and practice impact surveys completed after one year by 69 out of 114 eligible annual conference participants sampled. Results: Respondents showed a 40% average increase in specific cancer genetics knowledge. Respondents to the post course survey reported that they used course information and materials to counsel and refer patients for hereditary cancer risk assessment (77%), shared course information with other clinicians (83%), and wanted additional cancer genetics education (80%). Conclusions: There was a significant immediate gain in cancer genetics knowledge among participants in a targeted outreach programme, and subset analysis indicated a positive long term effect on clinical practice. Clinician education that incorporates evidence based content and case based learning should lead to better identification and care of individuals with increased cancer risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.