Aβ Immunotherapy is a promising therapeutic approach for Alzheimer's disease. Preclinical studies demonstrate that plaque prevention is possible; however, the more relevant therapeutic removal of existing plaque has proven elusive. Monoclonal antibodies in development target both soluble and insoluble Aβ peptide. We hypothesized that antibody specificity for deposited plaque was critical for plaque removal since soluble Aβ peptide would block recognition of deposited forms. We developed a plaque-specific antibody that targets a modified Aβ peptide (Aβ(p3-42)), which showed robust clearance of pre-existing plaque without causing microhemorrhage. Interestingly, a comparator N-terminal Aβ antibody 3D6, which binds both soluble and insoluble Aβ(1-42), lacked efficacy for lowering existing plaque but manifested a significant microhemorrhage liability. Mechanistic studies suggested that the lack of efficacy for 3D6 was attributed to poor target engagement in plaques. These studies have profound implications for the development of therapeutic Aβ antibodies for Alzheimer's disease.
Passive immunization with an antibody directed against the N terminus of amyloid  (A) has recently been reported to exacerbate cerebral amyloid angiopathy (CAA)-related microhemorrhage in a transgenic animal model. Although the mechanism responsible for the deleterious interaction is unclear, a direct binding event may be required. We characterized the binding properties of several monoclonal anti-A antibodies to deposited A in brain parenchyma and CAA. Biochemical analyses demonstrated that the 3D6 and 10D5, two N-terminally directed antibodies, bound with high affinity to deposited forms of A, whereas 266, a central domain antibody, lacked affinity for deposited A. To determine whether 266 or 3D6 would exacerbate CAA-associated microhemorrhage, we treated aged PDAPP mice with either antibody for 6 weeks. We observed an increase in both the incidence and severity of CAA-associated microhemorrhage when PDAPP transgenic mice were treated with the N-terminally directed 3D6 antibody, whereas mice treated with 266 were unaffected. These results may have important implications for future immune-based therapeutic strategies for Alzheimer's disease.
Activation of kainate receptors causes Co2+ influx into neurons, type-2 astrocytes, and O-2A progenitor cells. Agonist-activated Co2+ uptake can be performed using cultured cells or fresh tissue slices. Based on the pattern of response to kainate, glutamate, and quisqualate, three functionally different kainate-activated ion channels (K1, K2, and K3) can be discriminated. Co2+ uptake through the K1 receptor was only activated by kainate. Both kainate and glutamate activated Co2+ uptake through the K2 receptor. Co2+ uptake through the K3 receptor was activated by all three ligands: kainate, glutamate, and quisqualate. Co2+ uptake occurred through a nonselective cation entry pathway permeable to Co2+, Ca2+, and Mn2+. The agonist-dependent activation of divalent cation influx through different kainate receptors could be correlated with expression of certain kainate receptor subunit combinations. These results are indicative of kainate receptors that may contribute to excitatory amino acid-mediated neurotoxicity.
We report two serotonin (5-hydroxytryptamine, 5-HT) receptors, MR22 and REC17, that belong to the G-protein-associated receptor superfamily. MR22 and REC17 are 371 and 357 amino acids long, respectively, as deduced from nucleotide sequence and share 68% mutual amino acid identity and 30-35% identity with known catecholamine and 5-HT receptors. Saturable binding of 125I-labeled (+)-lysergic acid diethylamide to transiently expressed MR22 in COS-M6 cells was inhibited by ergotamine > methiothepin > 5-carboxamidotryptamine > 5-HT. For REC17, the rank of potency was ergotamine > 5-carboxamidotryptamine > methiothepin > methysergide > 5-HT. Both were insensitive to 5-HT1A, 5-HTTD or 5-HT2 serotonergic ligands [8-hydroxy-2-(di-n-propylamino)tetralin, sumatriptan, and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane]. The mRNAs encoding MR22 were detected in the CAl region ofhippocampus, the medial habenula, and raphe nuclei. In contrast, mRNAs encoding REC17 were found throughout the rat central nervous system. We propose that REC17 and MR22, designated as 5-HT5. and 5-HTsp, represent a distinct subfamily of 5-HT receptors.Serotonin (5-hydroxytryptamine, 5-HT) regulates a wide variety of sensory, motor, and behavioral functions in the mammalian central nervous system. This biogenic amine neurotransmitter is synthesized by neurons in the raphe nuclei of the brainstem that project throughout the central nervous system, with the highest density in basal ganglia and limbic structures (1). Serotonergic transmission is thought to be involved with a variety of behaviors and psychiatric disorders including anxiety, sleep regulation, aggression, feeding, and depression (2, 3). Understanding how 5-HT mediates its diverse physiological actions requires the identification and isolation of the pertinent 5-HT receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.