Subtractive expressed sequence tag analysis and screening of cDNA libraries derived from Brassica napus leaves subjected to mechanical wounding, flea beetle feeding or cold temperatures revealed eight genes encoding NAC-domain transcription factors. The genes were found to be differentially regulated in response to biotic and abiotic stresses including wounding, insect feeding, Sclerotinia sclerotiorum infection, cold shock and dehydration. Five BnNAC proteins were orthologous to Arabidopsis thaliana ATAF1 or ATAF2 and gave rise to developmental abnormalities similar to the A. thaliana nam and cuc mutants when expressed ectopically in A. thaliana. Transgenic lines expressing BnNAC14, exhibited large leaves, thickened stems and hyper-developed lateral root systems similar to that observed with A. thaliana NAC1, but also were delayed in bolting and lacked an apical dominant tap root. Several of the BnNAC proteins were capable of activating gene expression in yeast and recognized an element within the CaMV35S promoter. A yeast two-hybrid screen revealed that BnNAC14 interacted with other select BnNAC proteins in vitro and identified an additional BnNAC gene, BnNAC485. The protein interaction and transcriptional activation domains were mapped by deletion analysis.
SummaryA precursor of miR156 (MsmiR156d) was cloned and overexpressed in alfalfa (Medicago sativa L.) as a means to enhance alfalfa biomass yield. Of the five predicted SPL genes encoded by the alfalfa genome, three (SPL6, SPL12 and SPL13) contain miR156 cleavage sites and their expression was down-regulated in transgenic alfalfa plants overexpressing miR156. These transgenic plants had reduced internode length and stem thickness, enhanced shoot branching, increased trichome density, a delay in flowering time and elevated biomass production. Minor effects on sugar, starch, lignin and cellulose contents were also observed. Moreover, transgenic alfalfa plants had increased root length, while nodulation was maintained. The multitude of traits affected by miR156 may be due to the network of genes regulated by the three target SPLs. Our results show that the miR156/SPL system has strong potential as a tool to substantially improve quality and yield traits in alfalfa.
Background Developing Medicago sativa L. (alfalfa) cultivars tolerant to drought is critical for the crop’s sustainable production. miR156 regulates various plant biological functions by silencing SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. Results To understand the mechanism of miR156-modulated drought stress tolerance in alfalfa we used genotypes with altered expression levels of miR156, miR156-regulated SPL13, and DIHYDROFLAVONOL-4-REDUCTASE (DFR) regulating WD40–1. Previously we reported the involvement of miR156 in drought tolerance, but the mechanism and downstream genes involved in this process were not fully studied. Here we illustrate the interplay between miR156/SPL13 and WD40–1/DFR to regulate drought stress by coordinating gene expression with metabolite and physiological strategies. Low to moderate levels of miR156 overexpression suppressed SPL13 and increased WD40–1 to fine-tune DFR expression for enhanced anthocyanin biosynthesis. This, in combination with other accumulated stress mitigating metabolites and physiological responses, improved drought tolerance. We also demonstrated that SPL13 binds in vivo to the DFR promoter to regulate its expression. Conclusions Taken together, our results reveal that moderate relative miR156 transcript levels are sufficient to enhance drought resilience in alfalfa by silencing SPL13 and increasing WD40–1 expression, whereas higher miR156 overexpression results in drought susceptibility.
The differences determined by in situ histochemical staining and thioglycolic lignin analyses provided a new view of seed coat composition in a range of yellow-and brown-seeded germplasm of the Brassicaceae. Unextractable seed coat pigments were composed of proanthocyanidin (condensed tannin) polymers. Anthocyanins were absent in all seed coat tissues. Proanthocyanidin was deposited over the entire seed coat in dark-seeded germplasm and in patches in some yellow-seeded germplasm. The seed coat and hilum of Crambe abyssinica cv Prophet and some yellow-seeded accessions contained an unidentified, unreactive brown pigment. Several new pigmentation patterns, occurring as spots and patches and surrounding the hilum, became apparent from this analysis. Thioglycolic lignin was significantly lower in yellow-seeded samples compared with the dark-seeded accessions, and the majority of the lignin occurred in the seed coat. These discoveries provide new and useful data for plant breeders and indicate the need to use more detailed analytical methods in breeding programmes that have the goal of improving seed meal quality by reducing fibre and phenolics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.