A rare lethal autosomal recessive syndrome with skeletal dysplasia, polycystic kidneys and multiple malformations was first described by Gillessen-Kaesbach et al and subsequently by Nishimura et al. The skeletal features uniformly comprise a round pelvis, mesomelic shortening of the upper limbs and defective ossification of the cervical spine. We studied two unrelated families including three affected fetuses with Gillessen-Kaesbach-Nishimura syndrome using whole-exome and Sanger sequencing, comparative genome hybridization and homozygosity mapping. All affected patients were shown to have a novel homozygous splice variant NM_024740.2: c.1173+2T4A in the ALG9 gene, encoding alpha-1,2-mannosyltransferase, involved in the formation of the lipid-linked oligosaccharide precursor of N-glycosylation. RNA analysis demonstrated skipping of exon 10, leading to shorter RNA. Mass spectrometric analysis showed an increase in monoglycosylated transferrin as compared with control tissues, confirming that this is a congenital disorder of glycosylation (CDG). Only three liveborn children with ALG9-CDG have been previously reported, all with missense variants. All three suffered from intellectual disability, muscular hypotonia, microcephaly and renal cysts, but none had skeletal dysplasia. Our study shows that some pathogenic variants in ALG9 can present as a lethal skeletal dysplasia with visceral malformations as the most severe phenotype. The skeletal features overlap with that previously reported for ALG3-and ALG12-CDG, suggesting that this subset of glycosylation disorders constitutes a new diagnostic group of skeletal dysplasias.
Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (PVHH, OMIM 225790), also known as Fowler syndrome, is a rare autosomal recessive disorder, caused by mutations in FLVCR2. Hallmarks of the syndrome are glomerular vasculopathy in the central nervous system, severe hydrocephaly, hypokinesia and arthrogryphosis. The disorder is considered prenatally lethal. We report the first patients, a brother and a sister, with Fowler syndrome and survival beyond infancy. The patients present a phenotype of severe intellectual and neurologic disability with seizures, absence of functional movements, and no means of communication. Imaging of the brain showed calcifications, profound ventriculomegaly with only a thin edging of the cerebral cortex and hypoplastic cerebellum. Investigation with whole-exome sequencing (WES) revealed, in both patients, a homozygous pathogenic mutation in FLVCR2, c.1289C>T, compatible with a diagnosis of Fowler syndrome. The results highlight the power of combining WES with a thorough clinical examination in order to identify disease-causing mutations in patients whose clinical presentation differs from previously described cases. Specifically, the findings demonstrate that Fowler syndrome is a diagnosis to consider, not only prenatally but also in severely affected children with gross ventriculomegaly on brain imaging.
Rett syndrome (RTT) is a neurodevelopmental disorder with neurological symptoms, such as motor disorders and mental retardation. In most cases, RTT is caused by mutations in the DNA binding protein MeCP2. In mice, MeCP2 gene deletion has been reported to result in genome-wide increased histone acetylation. Transcriptional regulation of neurotrophic factor BDNF and transcription factor DLX5, essential for proper neurogenesis, is further altered in MeCP2-deleted animals. We therefore investigated the chromatin environment of MeCP2 target genes BDNF and DLX5 in lymphocytes from RTT patients and human controls, and analyzed the density of histones H3, H2B and H1, as well as the levels of methylation and acetylation on selected lysines of histone H3. Notably, we found a general increase in the density of histone H3 in RTT patients’ lymphocytes compared with controls, and decreased levels of trimethylation of lysine 4 on histone H3 (H3K4me3), a modification associated with transcriptional activation. The levels of acetylation of lysine 9 (H3K9ac) and 27 (H3K27ac) did not show any statistically significant changes when normalized to the decreased histone H3 levels; nevertheless, an average decrease in acetylation was noted. Our results reveal an unexpected alteration of the chromatin state of established MeCP2 target genes in lymphocytes of human subjects with RTT.
The early infantile onset ''congenital'' variant of Rett syndrome presents with deviations of behavior from very early infancy. Here, we report on a clinical-genetic study in a collected series of 14 Swedish girls with early infantile onset Rett syndrome phenotype. The clinical diagnosis was based on symptom onset before the age of 6 months and the patients fulfilled 3 or more Rett variant criteria and 5 or more supportive criteria. Genotype-phenotype correlation studies in the CDKL5-gene have recently shown clinical associations to early infantile onset Rett variants. Mutation analyses for both the MECP2-gene and the CDKL5-gene were, therefore, performed. Of interest, we found a large deletion covering 2 exons in MECP2, which underlines the importance of MECP2 mutation screening even for the ''atypical'' early infantile onset variants of Rett syndrome. No early infantile onset Rett syndrome patients in this study had the previously well-known hotspot mutations in the MECP2-gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.