Nematode-trapping fungi enter the parasitic stage by developing specific morphological structures called traps. The global patterns of gene expression in traps and mycelium of the fungus Monacrosporium haptotylum were compared. The trap of this fungus is a unicellular spherical structure called the knob, which develops on the apex of a hyphal branch. RNA was isolated from knobs and mycelium and hybridized to a cDNA array containing probes of 2822 EST clones of M. haptotylum. Despite the fact that the knobs and mycelium were grown in the same medium, there were substantial differences in the patterns of genes expressed in the two cell types. In total, 23?3 % (657 of 2822) of the putative genes were differentially expressed in knobs versus mycelium. Several of these genes displayed sequence similarities to genes known to be involved in regulating morphogenesis and cell polarity in fungi. Among them were several putative homologues for small GTPases, such as rho1, rac1 and ras1, and a rho GDP dissociation inhibitor (rdi1). Several homologues to genes involved in stress response, protein synthesis and protein degradation, transcription, and carbon metabolism were also differentially expressed. In the last category, a glycogen phosphorylase (gph1) gene homologue, one of the most upregulated genes in the knobs as compared to mycelium, was characterized. A number of the genes that were differentially expressed in trap cells are also known to be regulated during the development of infection structures in plant-pathogenic fungi. Among them, a gas1 (mas3) gene homologue (designated gks1), which is specifically expressed in appressoria of the rice blast fungus, was characterized.
The transcriptional response in the parasitic fungus Monacrosporium haptotylum and its nematode host Caenorhabditis elegans were analysed during infection using cDNA microarrays. The array contained 2684 fungal and 372 worm gene reporters. Dramatic shifts occurred in the transcriptome of M. haptotylum during the different stages of the infection. An initial transcriptional response was recorded after 1 h of infection when the traps adhered to the cuticle, but before immobilization of the captured nematodes. Among the differentially expressed genes were two serine protease genes (spr1 and spr2), and several homologues to genes known to be regulated in other pathogenic fungi. After 4 h, when approximately 40% of the nematodes were paralysed, we identified an upregulated cluster of 372 fungal genes which were not regulated during the other phases of the infection. This cohort contained a large proportion (79%) of genes that appear to be specific for M. haptotylum and closely related species. These genes were of two different classes: those translating into presumably functional peptides and those with no apparent protein coding potential (non-coding RNAs). Among the infection-induced C. elegans genes were those encoding antimicrobial peptides, protease inhibitors and lectins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.