Duplex stainless steels, with ferritic-austenitic microstructure, have excellent mechanical properties and corrosion resistance. However, when duplex stainless steels are exposed to temperatures between 600 and 1000 °C, some phase transformations can occur such as chromium nitrides precipitation, chromium carbides precipitation and the sigma phase formation. The formation of such compounds leads to loss in both corrosion resistance and fracture toughness. The negative effects of the formation of chromium nitrides, carbides and the sigma phase are due to the chromium depletion in the matrix. The phase transformations cited above occur initially at ferriticaustenitic interfaces and at the grain boundaries. The aim of this work is to identify and characterize the phase transformations, which occur when aging heat treatments are carried out at temperatures at which the kinetics is the fastest for the reactions mentioned. At first, the samples were annealed at 1100 °C for 40 min. The aging heat treatments were then carried out at 850 °C for 6, 40 e 600 min. Microstructural characterization was done by using optical microscopy with different etchings, in order to identify each phase formed in the duplex stainless steel during aging heat treatments. The toughness was also evaluated by using Charpy impact test. Impact tests show that loss of toughness was related to phase transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.