Psoriasis is a characteristic inflammatory and scaly skin condition with typical histopathological features including increased proliferation and hampered differentiation of keratinocytes. The activation of innate and adaptive inflammatory cellular immune responses is considered to be the main trigger factor of the epidermal changes in psoriatic skin. However, the molecular players that are involved in enhanced proliferation and impaired differentiation of psoriatic keratinocytes are only partly understood. One important factor that regulates differentiation on the cellular level is Ca2+. In normal epidermis, a Ca2+ gradient exists that is disturbed in psoriatic plaques, favoring impaired keratinocyte proliferation. Several TRPC channels such as TRPC1, TRPC4, or TRPC6 are key proteins in the regulation of high [Ca2+]ex induced differentiation. Here, we investigated if TRPC channel function is impaired in psoriasis using calcium imaging, RT-PCR, western blot analysis and immunohistochemical staining of skin biopsies. We demonstrated substantial defects in Ca2+ influx in psoriatic keratinocytes in response to high extracellular Ca2+ levels, associated with a downregulation of all TRPC channels investigated, including TRPC6 channels. As TRPC6 channel activation can partially overcome this Ca2+ entry defect, specific TRPC channel activators may be potential new drug candidates for the topical treatment of psoriasis.
It has been shown recently that triterpenes inhibit cancer cell growth of various cell types in vitro. In this work, the effect of highly purified triterpenes (TE) with betulin as the major compound (>80% w/w) on cell proliferation, apoptosis, and differentiation of human keratinocytes was analyzed in vitro, ex vivo, and in vivo. In vitro, TE increased calcium influx into primary keratinocytes and upregulated various differentiation markers including keratin 10. TE also specifically increased the expression of the non-selective transient receptor potential canonical (subtype) 6 (TRPC6) in keratinocytes, and knocking down TRPC6 inhibited keratin 10 upregulation. Ex vivo, in human skin explants TE induced the expression of TRPC6 in the epidermis and increased DNA fragmentation of terminally differentiating keratinocytes. Topical treatment with TE of actinic keratoses, that represent in situ squamous cell carcinomas with disturbed epithelial differentiation, resulted in downgrading of aberrant Ki67 expression and upregulation of keratin 10 in vivo. Our data indicate that TE promotes keratinocyte differentiation in vitro and in vivo. This effect seems to be mediated at least in part by TRPC6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.