Purpose:The bone marrow is a frequent and clinically important homing site for early disseminated breast cancer cells. Here, we aimed to profile the protein expression of these cells using unique cell line models and to evaluate the prognostic relevance of candidate gene expression for breast cancer patients. Experimental Design: To identify expression patterns characteristic for micrometastatic cells, three different cell lines (BC-K1, BC-P1, and BC-S1) established by SV40 immortalization of cancer cells isolated from the bone marrow of patients with breast cancer were compared with MCF-7 breast cancer and SV40 immortalized normal breast ductal cells (MTSV-1.7) using twodimensional gel electrophoresis followed by MALDI-ToF analysis.The prognostic significance and clinicopathologic associations of selected differentially expressed proteins were evaluated using high-density breast cancer tissue microarrays. Results: In contrast to MCF-7 and MTSV1-7 reference cell lines, all micrometastatic cancer cell lines displayed loss of epithelial cytokeratins (CK8, CK18, and CK19) and ectopic expression of vimentin commonly present in mesenchymal cells. Immunohistochemical analysis of 2,517 samples of breast cancer further showed that loss of cytokeratin and ectopic vimentin expression were significantly associated with a higher tumor grade, high mitotic index, and negative estrogen/ progesterone-receptor status. Although in univariate analyses significantly related to clinical outcome, none of the cytokeratins analyzed were independently associated with either overall or cancer-specific survival. Conclusions: Micrometastatic cancer cells exhibit marked changes in the expression pattern of cytoskeletal proteins indicative of an epithelial-mesenchymal transition. This phenotypical change could already be detected in primary tumors and is associated with the aggressive behavior of breast cancer cells in vivo.Breast cancer, the most common malignancy in females, kills f300,000 women worldwide every year and is the main reason for cancer-related death in the postoperative development of distant metastasis in secondary organs (1). Many of the patients who are primarily diagnosed as having apparently localized or regional breast cancer eventually develop distant metastases. Clinical experience showed that in early clinical stages, cells could already dissociate from the tumor's parenchyma via the hematogenous route and colonize the bone marrow, the clinically most relevant site of metastatic disease in patients with solid epithelial tumors (2). Often, many years after resection of the primary tumor and treatment of cancer patients, micrometastatic cancer cells can grow out to form overt metastases. Indeed, evidence is accumulating that the presence of occult carcinoma cells of epithelial origin in the bone marrow is an independent risk factor in breast cancer (3 -5). Understanding the biology of these dormant tumor cells in the bone marrow is therefore pivotal for the development of novel therapeutic approaches for the t...
Purpose: Cytokeratins (CKs) have been recognized for >20 years as structural marker proteins specific for epithelial cells. Recent expression profiling analyses indicate, however, that CK down-regulation may occur in breast cancer.Experimental Design: Here we evaluated the expression pattern of CK18 by immunohistochemical analysis of primary breast carcinomas (n ؍ 1458) spotted on a highdensity tissue microarray. The findings were correlated to histopathological risk factors and clinical outcome.Results: Down-regulation of CK18 (as compared to normal breast tissue) was observed in 25.4% of the tumors with a lower rate in lobular carcinomas (17.0%) than in ductal carcinomas (25.4%) or other histological entities (32.5%). CK down-regulation was significantly correlated to advanced tumor stage and high grade but not to axillary lymph node status. Kaplan-Meier survival analysis revealed CK18 as a prognostic indicator of overall survival (P ؍ 0.015) and cancer-specific survival (P ؍ 0.005).Conclusions: Down-regulation of the luminal CK18 is not rare and a clinically relevant event in breast cancer. This finding has important implications for the use of CK18 as epithelial tumor marker. The correlations with clinical follow-up suggest that CK18 might suppress tumor progression.
Psoriasis is a characteristic inflammatory and scaly skin condition with typical histopathological features including increased proliferation and hampered differentiation of keratinocytes. The activation of innate and adaptive inflammatory cellular immune responses is considered to be the main trigger factor of the epidermal changes in psoriatic skin. However, the molecular players that are involved in enhanced proliferation and impaired differentiation of psoriatic keratinocytes are only partly understood. One important factor that regulates differentiation on the cellular level is Ca2+. In normal epidermis, a Ca2+ gradient exists that is disturbed in psoriatic plaques, favoring impaired keratinocyte proliferation. Several TRPC channels such as TRPC1, TRPC4, or TRPC6 are key proteins in the regulation of high [Ca2+]ex induced differentiation. Here, we investigated if TRPC channel function is impaired in psoriasis using calcium imaging, RT-PCR, western blot analysis and immunohistochemical staining of skin biopsies. We demonstrated substantial defects in Ca2+ influx in psoriatic keratinocytes in response to high extracellular Ca2+ levels, associated with a downregulation of all TRPC channels investigated, including TRPC6 channels. As TRPC6 channel activation can partially overcome this Ca2+ entry defect, specific TRPC channel activators may be potential new drug candidates for the topical treatment of psoriasis.
It has been shown recently that triterpenes inhibit cancer cell growth of various cell types in vitro. In this work, the effect of highly purified triterpenes (TE) with betulin as the major compound (>80% w/w) on cell proliferation, apoptosis, and differentiation of human keratinocytes was analyzed in vitro, ex vivo, and in vivo. In vitro, TE increased calcium influx into primary keratinocytes and upregulated various differentiation markers including keratin 10. TE also specifically increased the expression of the non-selective transient receptor potential canonical (subtype) 6 (TRPC6) in keratinocytes, and knocking down TRPC6 inhibited keratin 10 upregulation. Ex vivo, in human skin explants TE induced the expression of TRPC6 in the epidermis and increased DNA fragmentation of terminally differentiating keratinocytes. Topical treatment with TE of actinic keratoses, that represent in situ squamous cell carcinomas with disturbed epithelial differentiation, resulted in downgrading of aberrant Ki67 expression and upregulation of keratin 10 in vivo. Our data indicate that TE promotes keratinocyte differentiation in vitro and in vivo. This effect seems to be mediated at least in part by TRPC6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.